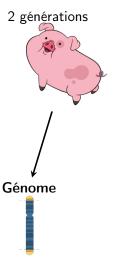
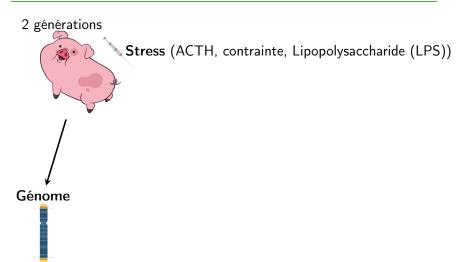

## Projet SUSoSTRESS : analyses de données métabolomiques

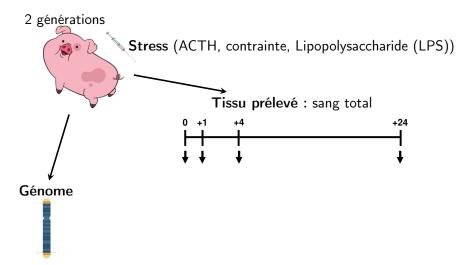


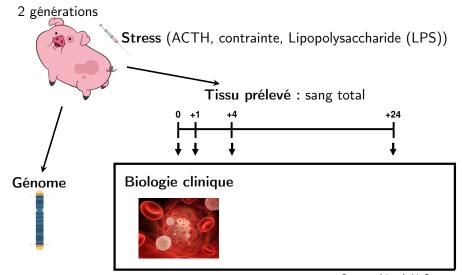


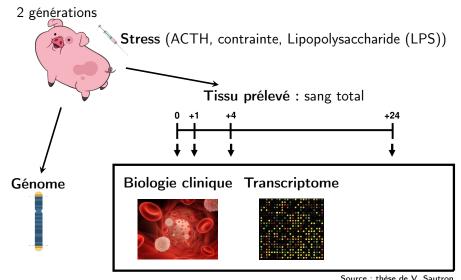
Gaëlle Lefort

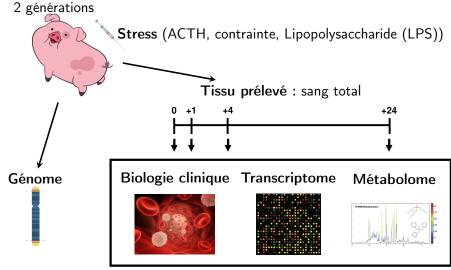

Biopuces

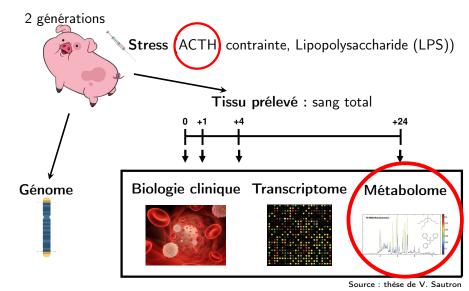

24 novembre 2016





2 générations



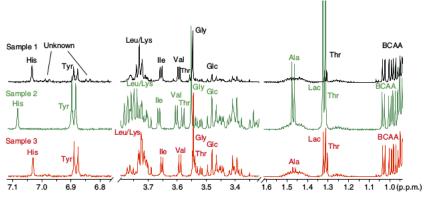












## Objectifs

- Etude de la réponse au stress au niveau du métabolome :
  - □ Quels sont les métabolites dont l'abondance change après un stress?
  - Quelles sont les différences de réponse au stress entre les générations et les lignées?
  - □ Quelles sont les différences dans le métabolome entre les générations et les lignées à *baseline* ?
- Identification et quantification des métabolites dans un spectre
- Intégration du métabolome avec le génome puis les autres données omics

### Données métabolomiques

Spectre obtenu par résonance magnétique nucléaire (RMN) :

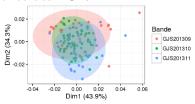


Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc, 9(6), 1416-1427.

#### Sommaire

#### Étapes de l'analyse de données métabolomiques

Recherche des métabolites dont l'abondance évolue après un stress


Identification (et quantification) des métabolites

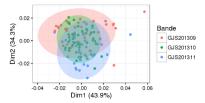
Conclusion

#### Pré-traitement

Nettoyage, suppression Prédes outliers, suppression traitement des biais expérimentaux Données temporelles: ASCA, tests Analyse non paramétriques... Variable réponse : OPLS-DA Avec des SNPs : mG-WAS, mQTL... Intégration Avec d'autres données omics: MFA. DIABLO. Identification des pics, Interpréréseaux biologiques tation

## Identification des problèmes avec des ACPs :




#### Pré-traitement

Nettovage, suppression Prédes outliers, suppression traitement des biais expérimentaux Données temporelles: ASCA, tests Analyse non paramétriques... Variable réponse : OPLS-DA Avec des SNPs : mG-WAS, mQTL... Intégration Avec d'autres données omics: MFA. DIABLO.

Identification des pics,

réseaux biologiques

# Identification des problèmes avec des ACPs :



#### Normalisation avec la méthode ComBat (package sva)

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127.

Interpré-

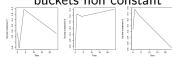
tation

## Analyses multivariées

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...


Intégration

Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO..

Interprétation Identification des pics, réseaux biologiques

#### Données temporelles

ASCA faire ressortir les buckets non constant



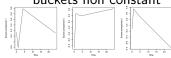
### Analyses multivariées

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...

Intégration


Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO..

Interpré-

Identification des pics, réseaux biologiques

#### Données temporelles

ASCA faire ressortir les buckets non constant



Tests tests de Wilcoxon deux à deux par rapport à baseline

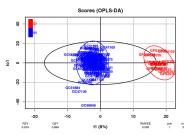
## Analyses multivariées

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...

Intégration


Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO..

Interpré-

Identification des pics, réseaux biologiques

#### Variable réponse

OPLS-DA faire ressortir les buckets créant la différence entre les groupes



## Intégration avec d'autres type de données

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...


Intégration

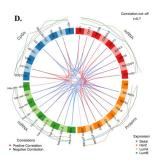
Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO..

Interpré-

Identification des pics, réseaux biologiques

#### Intégration de SNPs :




Hedjazi, L., Gauguier, D., Zalloua, P. A., Nicholson, J. K., Dumas, M. E., & Cazier, J. B. (2015). mQTL. NMR: an integrated suite for genetic mapping of quantitative variations of 1H NMR-based metabolic profiles. Analytical chemistry, 87(8), 4377-4384.

## Intégration avec d'autres type de données

Nettoyage, suppression Prédes outliers, suppression traitement des biais expérimentaux Données temporelles: ASCA, tests Analyse non paramétriques... Variable réponse : OPLS-DA... Avec des SNPs : mG-WAS, mQTL. Intégration Avec d'autres données omics: MFA, DIABLO... Identification des pics. Interpré-

réseaux biologiques

## Intégration de données multi-omics :



A Singh, B Gautier, C Shannon, M Vacher, F Rohart, S Tebbutt, K-A. Lê Cao. DIABLO – an integrative, multi-omics, multivariate method for multi-group classification. Submitted.

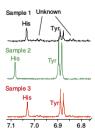
tation

#### Interprétation biologique

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...


Intégration

Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO...

Interpré-

Identification des pics, réseaux biologiques

#### Identification des pics :



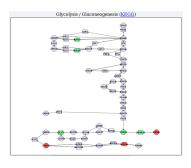
Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc, 9(6), 1416-1427.

#### Interprétation biologique

Prétraitement Nettoyage, suppression des outliers, suppression des biais expérimentaux

Analyse

Données temporelles : ASCA, tests non paramétriques... Variable réponse : OPLS-DA...


Intégration

Avec des SNPs : mG-WAS, mQTL... Avec d'autres données omics : MFA, DIABLO..

Interpré-

Identification des pics, réseaux biologiques

#### Réseaux biologiques :



Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature protocols, 6(6), 743-760.

#### Sommaire

Étapes de l'analyse de données métabolomiques

Recherche des métabolites dont l'abondance évolue après un stress

Identification (et quantification) des métabolites

Conclusion

## Données analysées

#### Données disponibles :

- 120 porcs Large White
- 4 temps de mesure
- 613 buckets

#### Pré-traitement :

- 1 spectre ré-aligné
- effet de bande corrigé

#### Tests statistiques

■ Tests de Wilcoxon appariés (non paramétriques) et correction de Bonferroni

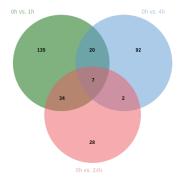
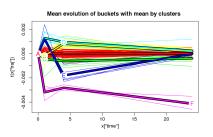
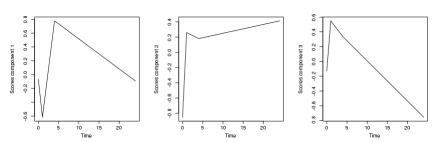



Figure – Nombre de buckets significatifs ( $\alpha = 5 \%$ )

#### Tests statistiques

- Tests de Wilcoxon appariés (non paramétriques) et correction de Bonferroni
- Classification de courbes pour les buckets mis en évidence





Figure – Clusters obtenus grâce à la méthode kml

Source: Genolini, C., & Falissard, B. (2010). KmL: k-means for longitudinal data. Computational Statistics, 25(2), 317-328

ACP sur les coefficients d'une ANOVA

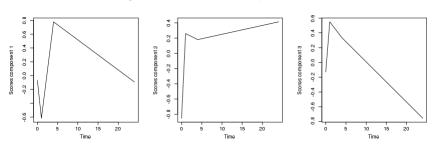

ACP sur les coefficients d'une ANOVA

Figure – Profils identifiés par l'ASCA



ACP sur les coefficients d'une ANOVA

Figure - Profils identifiés par l'ASCA



37 buckets

2 buckets

1 buckets

ACP sur les coefficients d'une ANOVA

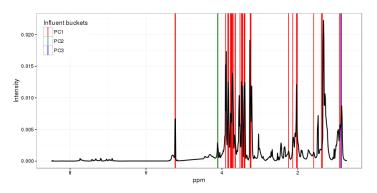




Figure – Buckets influents sur la courbe moyenne

## Comparaison entre les deux méthodes

Buckets mis en évidence par chaque méthode :



#### Sommaire

Étapes de l'analyse de données métabolomiques

Recherche des métabolites dont l'abondance évolue après un stress

Identification (et quantification) des métabolites

Conclusion

#### Plusieurs méthodes

#### ■ Identification à la main

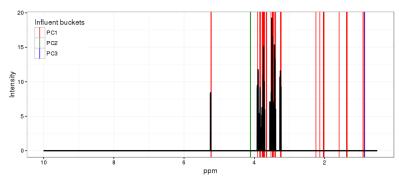
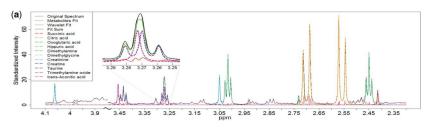




Figure - Spectre du glucose

#### Plusieurs méthodes

- Identification à la main
- Modèle de mélange complexe



Source : Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc, 9(6), 1416-1427.

# 1<sup>re</sup> méthode : Bayesian AuTomated Metabolite Analyser for NMR spectra (BATMAN)

- Avantages 
  grande bibliothèque de métabolites (environ 700)
  - fournit des intervalles de crédibilité aux estimations
- Inconvénients difficile à paramétrer
  - très couteux en temps
  - ne semble pas prendre en compte les décalages de pics

Source: Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc, 9(6). 1416-1427.

## 2e méthode : Automatic Statistical Identification of metabolites in Complex Spectra (ASICS)

- Avantages élimination des métabolites qui ne peuvent pas être dans le mélange
  - filtrage des métabolites trop peu concentrés
  - facile à utiliser et rapide

- Inconvénients assez peu de métabolites dans la librairie
  - l'initialisation peut faire varier les résultats

Source: Tardivel, P. J., Servien, R., & Concordet, D. (2016), Non-asymptotic active set properties of lasso-type estimators in small-dimension.

Données Mélange de 21 métabolites en concentrations connues

Pseudo R<sup>2</sup> 
$$R_{ASICS}^2 = 0,94 < R_{BATMAN}^2 = 0,54$$

Données Mélange de 21 métabolites en concentrations connues

Pseudo R<sup>2</sup> 
$$R_{ASICS}^2 = 0,94 < R_{BATMAN}^2 = 0,54$$

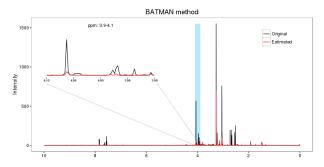



Figure - Estimation du spectre par la méthode BATMAN

Données Mélange de 21 métabolites en concentrations connues

Pseudo R<sup>2</sup> 
$$R_{ASICS}^2 = 0,94 < R_{BATMAN}^2 = 0,54$$

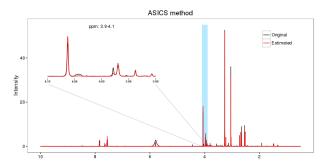



Figure – Estimation du spectre par la méthode ASICS

Données Mélange de 21 métabolites en concentrations connues Pseudo R<sup>2</sup>  $R_{ASICS}^2=0,94 < R_{BATMAN}^2=0,54$ 

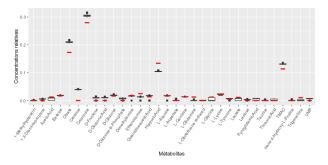



Figure - Concentration relatives estimées par la méthode ASICS

#### Sommaire

Étapes de l'analyse de données métabolomiques

Recherche des métabolites dont l'abondance évolue après un stress

Identification (et quantification) des métabolites

Conclusion

## Analyses réalisées

- Caractérisation de la réponse au stress pour les 3 expériences
- Différence de réponse au stress entre les lignées et les générations
- Différences entre les générations et les lignées à baseline

#### Perspectives

Métabolome Refaire les analyses en utilisant les concentrations relatives obtenues grâce à ASICS

Intégration du génome Recherche de mQTL (métabolome) et de eQTL (transcriptome)

Interprétation biologique Interprétation à l'aide de réseaux biologiques (quelle méthode?)