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Sources

These slides have been made using previous presentations
from:

• Delphine Labourdette (LISBP) - diaporama
• Cathy Maugis (IMT) - diaporama
• Franck Picard (LBBE, Lyon) - diaporama
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https://indico.math.cnrs.fr/event/3780/contributions/3241/attachments/2196/2551/01_scRNAseq_pres_Delphine_Bioinfo_2018-10-18.pdf
https://indico.math.cnrs.fr/event/3780/contributions/3242/attachments/2195/2550/Slides-maugis-181018.pdf
https://mia.toulouse.inra.fr/images/9/9b/Single_cell.pdf


Simple description of single cell
datasets
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10x Genomics Chromium
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A few remarks

• barcoding is used to index each cell
• UMI are used to index each transcript and correct the

amplification bias during library preparation
• droplet technology does not allow for spike-ins (which

would be useful for normalization)
• droplets sometimes include duplicates or triplicates (more

frequent in cancer cells; estimated at ~0-10% of the
droplets, depending on the number of cells, it increases with
the number of cells )

• many other sc technologies (check Delphine’s slides)
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Single-cell technologies

[Regev et al., 2017]
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Why single cell?

From a statistical perspective…

From 10x Genomics
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Standard analyses and tools

• normalization and dimension reduction
• clustering
• differential expression

can be performed using:

• the bioconductor workflow “single cell” (that uses
the packages scatter and scran)

• the all-in-one pipeline “seurat”
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http://master.bioconductor.org/packages/release/workflows/html/simpleSingleCell.html
https://satijalab.org/seurat


Description of datasets and
requests from project TregDiab
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Datasets

• Count dataset (as produced by Claire) with n = 8, 273
cells and p = 27, 998 genes (Unique Molecular Identifier)

• Metadata:
• on cells: barcode (identifies the cell), group (IL15 or

IL2) and genotype (WT or KO)
• on genes: ENSEMBLE gene name and Gene name

• Frequency distribution of conditions over cells:
WT KO

IL15 2452 1609
IL2 2175 2037

The rest of the analysis will focus on cells coming from WT
samples.
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Questions

1. On the whole population of cells (not taking into account
groups and genotypes), perform a typology of cells
(unsupervised clustering).

2. Identify markers (genes) that are specific of each cell type.
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Data cleaning and normalization
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Different steps of the normalization

1. Quality control of the cells: library size distribution, number of
expressed genes distribution, mitocondrial proportion distribution.

⇒ Atypical cells are removed from the analysis.

2. Cell cycle classification.

⇒ Only cells in G1 phase are used for the analysis.
3. Quality control of genes: average count distribution, number of

cells in which the gene is expressed.

⇒ Atypical genes (lowly expressed) are removed from the
analysis.

4. Normalization of cell specific biases: size factor to correct
library sizes are computed after a first (crude) clustering.

What has not been done: Doublet detection 13



Quality control of cells

14



Filtering low quality cells

• remove cells with low library size
• remove cells with a low number of expressed genes
• remove cells with a too large number of mitocondrial

genes

⇒ 4,282 remaining cells (out of 4,627 original cells)
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Cell cycle classification

Cell cycle classification is performed using cyclone (R
package scran): based on a model that has been trained on
specific markers of cell cycles (for mouse and human) ⇒ only
cells in G1 phase are used in the analyses (to remove mitosis
effects)

IL15 IL2
G1 2027 1871
G2 148 99
S 84 53
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Gene quality

distribution of high average log
expressed genes expression distribution
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Filtering atypical genes

Removed non variable genes: 13, 629 with a variance equal to
0 (48.7%).

low expressed genes genes expressed in few cells
⇒ 10,418 remaining genes (out of 27,998 initial genes)
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Normalization

Normalization is performed after similar cells have been
clustered together (based on the most expressed genes; R
package scater).

⇒ Scaling factors of library size are obtained (similar to
RNA-seq, one can even normalize the library size as in edgeR).
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Dimension reduction and
clustering
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Standard approach for exploratory analysis

• dimension reduction (PCA, nearest neighbors graphs…)

• visualization (PCA, or t-SNE based on PCA or on any
other dimension reduction)

• clustering

21



PCA (all genes)
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t-SNE (perplexity: 50, R package scater)
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What does t-SNE?

If cell expressions are noted x1, …, xn (n cells, xi is in Rp), then

• compute a similaritly between samples with:

pi|j = exp(−γ2∥xi − xj∥2)∑
k ̸=j exp(−γ2∥xk − xj∥2)

• search for representation in R2, y1, …, yn with a similarity
between points in the new representation based on:

qi|j = exp(−∥yi − yj∥2)∑
k̸=j exp(−∥yk − yj∥2)

• based on the minimization KL divergence between p and q

But: the objective function is not convex and the results are
very sensitive to γ (perplexity) and to the initialization
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t-SNE: remarks

• t-SNE is good at representing local distances but not
global ones (non linear dimension reduction)

• the perplexity can change a lot the representation (no
good values found for this dataset)

• the population of cells seem very homogeneous and
not related to the genotype
(the same is observed on PCA projection)

How could we improve that? Use log / raw expression, base
the algorithm on PCA results, try a wider range of perplexity
values…?
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Clustering

• extract t-SNE coordinates
• use HAC on those

Other approaches for clustering

• use a NN network + clustering of graph (Louvain
algorithm that optimizes the modularity)

• use other dimension reduction methods and perform any
clustering algorithm

⇒ results are different (visualization can even be extremely
different)
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Clustering results
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Conditions in clusters
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Exploratory analysis of markers

automatic detection prior knowledge
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Not too bad for some known markers…

Why not visible on heatmaps?
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General overview of sc models in
statistics
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How bad is the situation in single cell data?

Overdispersion is mainly biological because diversity is high
between cells
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Expression is a bursty process: zeros are biological
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sc Differential Expression Analysis with ZINB

[Risso et al., 2018] - package zinbwave

For cell i, gene j in condition r, gene expression is modeled by:

Xijr ∼ πijrδ0 + (1 − πijr)NB(µijr)

Remaining problems:

• We are not really able to discriminate low expression from
no expression

• Estimation is hard (use of a Bayesian framework to
address this issue)

• a similar method exists for PCA [Durif et al., 2018]
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