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These slides have been made using previous presentations
from:

= Delphine Labourdette (LISBP) - diaporama
= Cathy Maugis (IMT) - diaporama
= Franck Picard (LBBE, Lyon) - diaporama


https://indico.math.cnrs.fr/event/3780/contributions/3241/attachments/2196/2551/01_scRNAseq_pres_Delphine_Bioinfo_2018-10-18.pdf
https://indico.math.cnrs.fr/event/3780/contributions/3242/attachments/2195/2550/Slides-maugis-181018.pdf
https://mia.toulouse.inra.fr/images/9/9b/Single_cell.pdf

Simple description of single cell
datasets




. Droplet biology

P

b

+ Encapsulating millions of single cells in controlled, biocompatible,
droplet micro-reactors

Single cells + reaction mix in droplets

+ Small droplet volumes lead to efficient & robust single cell reactions

10x Technology samples a pool of ~750,000 10x Barcodes
to separately index each cell's transcriptome
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» barcoding is used to index each cell

= UMI are used to index each transcript and correct the
amplification bias during library preparation

= droplet technology does not allow for spike-ins (which

would be useful for normalization)

= droplets sometimes include duplicates or triplicates (more
frequent in cancer cells; estimated at ~0-10% of the
droplets, depending on the number of cells, it increases with

the number of cells )

= many other sc technologies (check Delphine’s slides)



1,000,000 O SCRNA-Seq studies

> @ Single-cell chromatin accessibility studies 10x Genomic SPLiT—Se
3 Droj Se RNA-
S 100,000 sci- eq
3 CytoSeq / |nDrop Q; DroNc-Seq
< 10,000 MARS- Seq O % Q@
K% [} . o Seq-Well
= 1000 Fluidigm C1 o
3 STRT-Seq CEL-Seq me &P o
2 - Tang etal. O N ¢ N QQ [ ]
=) . o o Smart-Seq2 °
£ 10 SMART-Seq 0o ©° © B
ks 1 O Tang et al.
* T T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016 2017

Study publication date

[Regev et al., 2017]



From a statistical perspective..
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= normalization and dimension reduction
= clustering

» differential expression
can be performed using:

= the bioconductor workflow “single cell” (that uses
the packages scatter and scran)

= the all-in-one pipeline “seurat”


http://master.bioconductor.org/packages/release/workflows/html/simpleSingleCell.html
https://satijalab.org/seurat

Description of datasets and
requests from project TregDiab




= Count dataset (as produced by Claire) with n = 8,273
cells and p = 27,998 genes (Unique Molecular Identifier)
» Metadata:

= on cells: barcode (identifies the cell), group (IL15 or
IL2) and genotype (WT or KO)
= on genes: ENSEMBLE gene name and Gene name

» Frequency distribution of conditions over cells:
WT KO
IL15 2452 1609
IL2 2175 2037

The rest of the analysis will focus on cells coming from WT

samples.
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1. On the whole population of cells (not taking into account
groups and genotypes), perform a typology of cells
(unsupervised clustering).

2. Identify markers (genes) that are specific of each cell type.
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Data cleaning and normalization
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1. Quality control of the cells: library size distribution, number of
expressed genes distribution, mitocondrial proportion distribution.

= Atypical cells are removed from the analysis.
2. Cell cycle classification.

= Only cells in G1 phase are used for the analysis.

3. Quality control of genes: average count distribution, number of
cells in which the gene is expressed.

= Atypical genes (lowly expressed) are removed from the
analysis.

4. Normalization of cell specific biases: size factor to correct
library sizes are computed after a first (crude) clustering.

What has not been done: Doublet detection 13
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= remove cells with low library size
= remove cells with a low number of expressed genes

= remove cells with a too large number of mitocondrial
genes

= 4,282 remaining cells (out of 4,627 original cells)
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Cell cycle classification is performed using cyclone (R

package scran): based on a model that has been trained on
specific markers of cell cycles (for mouse and human) = only
cells in G1 phase are used in the analyses (to remove mitosis

effects)
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Removed non variable genes: 13,629 with a variance equal to
0 (48.7%).
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log, average counts logso Number of cells

low expressed genes genes expressed in few cells

= 10,418 remaining genes (out of 27,998 initial genes)
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Normalization is performed after similar cells have been
clustered together (based on the most expressed genes; R
package scater).

= Scaling factors of library size are obtained (similar to
RNA-seq, one can even normalize the library size as in edgeR).
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Dimension reduction and

clustering
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= dimension reduction (PCA, nearest neighbors graphs...)

= visualization (PCA, or t-SNE based on PCA or on any
other dimension reduction)

» clustering
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Dimension 2: 2% variance

Dimension 1: 5% variance

 vtance exisned
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Dimension 2

t-SME (pCMF output)
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If cell expressions are noted xi, .., x, (n cells, x; is in RP), then

= compute a similaritly between samples with:
exp(—7*[1x — xl%)
2k (=72 — xi[|?)

= search for representation in R?, y;, .., y, with a similarity

pij =

between points in the new representation based on:
exp(—lyi — yill*)

Py exp(—lyx — yill?)

» based on the minimization KL divergence between p and g

qij =

But: the objective function is not convex and the results are
very sensitive to 7y (perplexity) and to the initialization
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» t-SNE is good at representing local distances but not
global ones (non linear dimension reduction)

= the perplexity can change a lot the representation (no
good values found for this dataset)

= the population of cells seem very homogeneous and
not related to the genotype
(the same is observed on PCA projection)

How could we improve that? Use log / raw expression, base
the algorithm on PCA results, try a wider range of perplexity

values...?
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= extract t-SNE coordinates

= use HAC on those
Other approaches for clustering
= use a NN network + clustering of graph (Louvain
algorithm that optimizes the modularity)
= use other dimension reduction methods and perform any

clustering algorithm

= results are different (visualization can even be extremely
different)
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Dimension 2: 2% variance
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General overview of sc models in
statistics
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High-magnitude
outlier

Overdispersion

Logo(RPM) in cell 1

Dropout events

Log,o(RPM) in cell 2

Overdispersion is mainly biological because diversity is high
between cells
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Promoter active periods

ECLIINIE NMTEnn fimn mimnn g we w0 oo (I

Ell Il I NPT D Am T Pnmnmer Prennn men miimmmm
0 10 20 30 40 50 60 70 80 90 100
g X102 mRNA levels — My — M
6

3

S 4

Q

]
2
0 L
0 10 20 30 40 50 60 70 80 90 100
x104 Protein levels — P — P

Copies

0 . . " n . . . . .
0 10 20 30 40 50 60 70 80 90 100

Time (h)

33



[Risso et al., 2018] - package zinbwave

For cell i, gene j in condition r, gene expression is modeled by:

Xijr ~ o + (1 — ) NB( 1)

Remaining problems:

= We are not really able to discriminate low expression from
no expression

= Estimation is hard (use of a Bayesian framework to
address this issue)

= a similar method exists for PCA [Durif et al., 2018]
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