

December 17th, 2020

A Shiny application To Explore Clusterings of Single-Cell RNA-seq data

ASTEC-sc

Contents

- 1. Context
- 2. Overview of the app ASTEC-sc
- 3. What's next?

Contents

- 1. Context
- 2. Overview of the app ASTEC-sc
- 3. What's next?

1. Context 2. Overview of the app ASTEC-sc

3. What's next?

Data : single cell RNA seq

(https://community.10xgenomics.com)

1. Context 2. Overview of the app ASTEC-sc 3. What's next ?

Main steps in statistical analysis

1. Context

40.0%

20.0% accentage of tools 20.0% accentage of tools 10.0%

0.0%

Visualisation Clustering In Realistion

tormalisation

2. Overview of the app ASTEC-sc

Single cell RNA seq in R

Packages : SingleCellExperiment (SCE), Seurat, ...

3. What's next?

Structure of SCE object

SCE = SingleCellExperiment(assays = SimpleList(counts=X, normcounts=Xnorm, logcounts=Xlog))#assays

```
reducedDims(SCE) = SimpleList(...)
```

```
SCE@metadata[["clustering"]] = list(...)
```

```
SCE@metadata[["cellType1"]] = vector1
```

SCE@int_elementMetadata\$NameType1 <- vectorfeature1

Contents

- 1. Context
- 2. Overview of the app ASTEC-sc
- 3. What's next

1. Context 2. Overview of the app ASTEC-sc

Tabs of the app

Introduction

- ★ Upload data
 Descriptive statistics
- ★ Visualization of data
- \star Comparison of cell clusterings
- ★ Analysis of one cell clustering
- ★ Detection of marker genes
- ★ Analysis of genes

3. What's next?

Welcome to this Shiny App

The aim of this shiny application is to exploit clustering results on single-cell RNA-seq data.

This application only uses SingleCellExperiment (SCE) object. The structure of this SingleCellExperiment object, denoted by SCE, is described below.

Structure of SCE

Please follow these recommendations for building your SCE object :

- 1. sce@assays : contains the different types of data (row counts), normalized counts (normcounts), lognormalized counts (logcounts), ...). By default: 'counts', 'logcounts' and 'normcounts' are required. The rows correspond to features (e.g. genes), the columns to cells.
- 2. sce@metadata contains supplementary information for cells (qualitative variables).
- 3. sce@metadata\$clustering contains a list of the different cell clusterings.
- 4. reducedDims(sce) contains a list of coordinate matrices for each considered dimensionality reduction method.
- sce@int_elementMetadata contains the supplementary information for features. In particular, sce@int_elementMetadata\$KnownFunc may contain a binary dataframe where each column correspond to a biological function and some features in row.

This app is compatible with R version >= 3.6.3 (2020-02-29) and requires the following packages:

- scales 1.1.0
- Seurat 3.1.5
- dplyr 0.8.5
- scater 1.14.6
- SingleCellExperiment 1.8.0

- DT 0.13
- plotly 4.9.2.1
- ggplot2 3.3.0
- shiny 1.4.0.2

Upload data

Upload a SCE object in a Rdata file

Does the application detect the information?

User can control if his object is well constructed :

3. What's next?

Choose the RData file containing the SCE object:

Browse	SCE-ZeiselBrain-example.RData
	Upload complete

counts, normcounts, logcounts

· the following cell clusterings:

Name	Nb of clusters				
ClustZeisel	9				
ClustPcared	9				
ClustSC3	9				
ClustSeurat	15				

· the following coordinate matrices of dimensionality reduction methods:

*

Name	Nb of dimensions
PCAlogcounts	10
tSNElogcounts	2
UMAPlogcounts	2
PCAnormcounts	10

Visualization in dimensionality reduction

User choices :

Comparison of cell clusterings

1. Context

Analysis of cell clustering

3. What's next?

Detection of marker genes

Choose two cells groups (based on clusters) [C1, C2]

Calculation of indicators by gene:

- pct.1 (pct.2): % of express cells in C1 (resp. C2)
- **avg_logFC**: log fold-change of the average expression between the two groups
- AUC: the area under the ROC curve
- **p_val_adj**: the adjusted p-value on *Wilcoxon test*, based on *Bonferroni correction* using all genes in the dataset

Marker genes := Selection with threshold on theses indicators

One to one One to many Many to one Many to many 1. Context 2.Overview of the app ASTEC-sc 3. What's next?

Detection of marker genes

				Ū					
ay of selected genes									
	Fin	d Marker Genes	Indicators						
Choose the studied cell clustering:	With t	he chosen threshold	ds, 10 marker genes a	are detected.					
ClustZeisel	Chow	10 r optrioc					. —		
Choose one (some) studied cluster(s):	311000	10 · entries				S	earch:		
6		gene	avg_logFC	pct.1	pct.2 🍦	p_val_adj 🌲	AUC 👙	delta 🔶	func
Choose the comparing group of clusters (one.	1	Arap3	2.913	0.754	0.133	0.000	0.833	0.621	
some or all others):	2	Fam101b	2.998	0.560	0.033	0.000	0.767	0.527	
9	3	Flt1	2.742	0.863	0.133	0.000	0.886	0.730	
Go - Compute indicators.	4	Gimap6	3.057	0.783	0.100	0.000	0.860	0.683	
	5	ltm2a	2.736	0.994	0.333	0.000	0.933	0.661	
	6	Ly6c1	2.976	0.914	0.217	0.000	0.893	0.697	
Calibration of indicators	7	mt-Tc	3.026	0.891	0.550	0.000	0.817	0.341	
Maximum threshold for the adjusted p-val:	8	Slc38a3	3.236	0.640	0.033	0.000	0.805	0.607	
	9	Slc7a5	2.848	0.749	0.167	0.000	0.821	0.582	
0 0.2 0.2 0.3 0.4 0.5 0.0 0.1 0.5 0.9 I	10	Slco1a4	2.755	0.846	0.150	0.000	0.873	0.696	

1. Context 2.Overview of the app ASTEC-sc 3. What's next?

Study of selected genes

Introduction Upload Data

Descriptive statistics

Ŧ

Ŧ

Visualization of data Comparison of

Comparison of several cell clusterings

Chosen cell clustering [

Detection of marker genes

Study of selected genes

Study of selected genes

Choose the source of genes

- From your object
- From detection of marker genes tab
- From a gene function

Select genes

- All Genes
- Some Genes

Choose the studied clustering:

ClustZeisel

Choose the dimensionality reduction method:

tSNElogcounts

Analyse the selected genes.

Study of selected genes

Contents

- 1. Context
- 2. Overview of the app ASTEC-sc
- 3. What's next

3. What's next?

Advantages

User-friendliness

Many options for analysis

Autonomy

Comparison of cell clusterings

Improvement

More comparison of cell clusterings

Open structure of sce object

Deployment

Mathrice : the CNRS server

Access only with internet

The way to use ASTEC-sc without R and packages