
Random forest for network inférence (in biology)
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What is a network/graph?

Mathematical object used to model relational data between entities.

A relation between two entities is modeled by an edge

+ edges can even be oriented
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(non biological) Examples

Social network: nodes: persons - edges: 2 persons are connected (“friends”)

(Natty’s facebook1 network)

1
https://www.facebook.com
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(non biological) Examples

Modeling a large corpus of medieval documents

Notarial acts (mostly “baux à fief”, more
precisely, land charters) established in
a “seigneurie” named “Castelnau Mon-
tratier”, written between 1250 and 1500, in-
volving tenants and lords.a

a
http://graphcomp.univ-tlse2.fr
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(non biological) Examples

Modeling a large corpus of medieval documents

▶ nodes: transactions and individuals
(3 918 nodes)

▶ edges: an individual is directly
involved in a transaction (6 455 edges)
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Standard issues associated with networks

Inference
Given data, how to build a graph whose edges represent the “dependency relationship”
between variables?

Random forest is useful here!

Graph mining (examples)

1. Network visualization

2. Network clustering
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Network inference in biology: an overview

From GGM to random forest

Variants of network inference with random forest

More on tree ensemble methods
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Cell molecular mechanisms: gene transcription/translation

Disclaimer: This is way more complicated than what I will tell...!
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Cell molecular mechanisms: (gene-)gene regulation

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 7



In short: gene networks

What we would like: use data on gene expression to obtain a network with:

▶ nodes = genes

▶ edge = a regulation process of one gene on the other gene

What we approximately actually obtain:

▶ nodes = genes

▶ edge = the fact that two genes show similar patterns of expression
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Collecting data: gene expression

Various techniques:

▶ continuous data: RT-qPCR, various arrays

▶ count data: RNA-seq (and its single-cell variant)
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Back to a more formal (less biology) description

Data: large scale gene expression data

individuals
n ≃ 30/50

X =

 . . . . . .

. . X j
i . . .

. . . . . .


︸ ︷︷ ︸
variables (genes expression), p≃103/4

What we want to obtain: a network with

▶ nodes: genes

▶ edges: some kind of dependency between genes (ideally regulation)

Note: This is hard to perform genome-widely: Humans ≥ 20,000 genes coding for
proteins (plus the others), Bacillus subtilis ∼ 4,000 genes
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Main methods used for network inference

▶ Relevance network: correlation, mutual information

▶ Partial correlation (Gaussian Graphical Model framework)

▶ Bayesian network

▶ Other regression based methods, including:
▶ random forest: best in [Marbach et al., 2012] / DREAM4 challenge!
▶ (of course) deep learning
▶ ...
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Network inference in biology: an overview

From GGM to random forest

Variants of network inference with random forest

More on tree ensemble methods
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Using correlations: relevance network
[Butte and Kohane, 1999, Butte and Kohane, 2000]

First (naive) approach: correlations + threshold

“Correlations” Thresholding Graph
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But correlation is not causality...

strong indirect correlation
y z

x set.seed(2807); x <- runif(100)

y <- 2*x+1+rnorm(100,0,0.1); cor(x,y); [1] 0.9988261

z <- 2*x+1+rnorm(100,0,0.1); cor(x,z); [1] 0.998751

cor(y,z); [1] 0.9971105

♯ Partial correlation

cor(lm(y∼x)$residuals, lm(z∼x)$residuals) [1] -0.1933699
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Partial correlation is also...

For: (Xi )i=1,...,n i.i.d. N (0,Σ) (gene expressions)

▶ Cor
(
X j ,X j ′ |(X k)k ̸=j ,j ′

)

▶ Related to the entries of Σ−1

▶ Related to βjj ′ in linear regression models:

X j =
∑
j ′ ̸=j

βjj ′X
j ′ + ϵj
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GGM
For: (Xi )i=1,...,n i.i.d. N (0,Σ) (gene expressions)

▶ edge between j and j ′ ⇔ Cor
(
X j ,X j ′ |(X k)k ̸=j ,j ′

)
̸= 0

▶ Related to the entries of Σ−1

edge between j and j ′ ⇔
[
Σ−1

]
jj ′

̸= 0
[Friedman et al., 2008]

▶ Related to βjj ′ in linear regression models:

X j =
∑
j ′ ̸=j

βjj ′X
j ′ + ϵj

edge between j and j ′ ⇔ βjj ′ ̸= 0 in

X j =
∑
j ′ ̸=j

βjj ′X
j ′ + ϵj

[Meinshausen and Bühlmann, 2006]
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Why restrict yourself at linear regression?

▶ GGM: Gaussian assumption + fit of p linear regressions

∀ j = 1, . . . , p, X j =
∑
j ′ ̸=j

βjj ′X
j ′ + ϵj

Problems: ill-conditionned, only linear dependencies, restricted to Gaussian case.

▶ Just fit p regressions!

∀ j = 1, . . . , p, X j =
∑
j ′ ̸=j

Fj(X
j ′) + ϵj

Fj : your favorite regression method!
But: Direct dependency interpretation is lost.
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My favorite regression method? Random forest!

[Huynh-Thu et al., 2010] GENIE3
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GENIE3: Using feature selection in RF to predict edges
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Important notes: orientation

Notation: wjj ′ weight obtained by X j ′ to predict X j

▶ in general wjj ′ ̸= wj ′j which gives a way to obtain oriented edges (not really
causality though)
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Important notes: weight definition

Notation: wjj ′ weight obtained by X j ′ to predict X j

▶ in RFj , wjj ′ := Gini index of variable j ′, e.g., reduction of variance due to splits
defined by variable j ′: Pierre’s Tuesday class∑

N defined by j ′

[
|N |Var

(
X j
N

)
− |NR |Var

(
X j
NR

)
− |NL|Var

(
X j
NL

)]
N improperly defines either the node, the split, and the samples assigned to the node.

Advantages:

▶ fast to compute (compared to MDA obtained by permutation)

▶ RF can be replaced by Extra-Trees ensemble Pierre’s Thursday class

Drawback:

▶ migth be slightly less efficient than MDA

RF for functional data
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Important notes: ranking

Notation: wjj ′ weight obtained by X j ′ to predict X j

▶ Can we really rank (wjj ′)j ,j ′: j ̸=j ′ globally? For a given forest RFj ,∑
j ′

wjj ′ ∼ n ×Var
(
X j

)

⇒ sound preprocesssing: reduction of all variables to unit variance

▶ output: ranking of the edges based on (wjj ′)j ,j ′: j ̸=j ′ ⇒ edges require a threshold

RF for functional data
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Experiments on Escherichia coli

▶ expression data: n = 907, p = 4297 (microarray)

▶ “ground truth” network: from RegulonDB (curated but might not be exaustive;
1471 genes only)

Hyper-parameters:

▶ # trees: 1, 000

▶ m =
√
p − 1 or p − 1 (full)

▶ RF or ET

▶ no decision on edges (PR and ROC curves)

▶ sets of predictors restricted to known regulators
So: ranking of (wjj′)j=1,...,p, j′: reg. only.

RF for functional data
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Results

RF for functional data
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Network inference in biology: an overview

From GGM to random forest

Variants of network inference with random forest

More on tree ensemble methods
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DIANE: How to select edges? [Cassan et al., 2021]

https://diane.bpmp.inrae.fr/

RF for functional data
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What’s new in DIANE?

1. predictors are only TF (transcription factors) standard pre-filtering

2. transcription factors (highly correlated) can be grouped into a single gene

3. edges pre-selected using GENIE3 (threshold based on plausible global density)

4. empirical p-value computation based on MDA for final selection with rfpermute
(using MDA)
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More on edge selection [Aibar et al., 2017]

SCENIC (oriented toward single-cell) / GENIE3 component selects edges using:

1. weight > 0.001

2. further filters for multiple gene sets (a gene set = a cluster of genes with a TF):
▶ top predicted genes for each TF
▶ top predictor TF for each gene
▶ several weight thresholds

3. further filtering (using biological information on DNA motifs with RcisTarget)
not described here
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More on tree ensemble methods [Aibar et al., 2017]

Alternative to GENIE3 in SCENIC: GRNBoost
https://github.com/aertslab/GRNBoost

Replace RF method with XGBoost:

▶ tree ensemble based on boosting Pierre’s Thursday class

▶ tree depth restricted to 1

Map/Reduce implementation (for spark):

▶ map split based on targets

▶ map output: set of edges (same filters) (not

100% sure)

▶ reduce: union of output edges

RF for functional data
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Integration of knowledge into Random Forest [Petralia et al., 2015]

IRafNet

RF for functional data
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Using prior knowledge as a weight

1. Knowledge (given): modelled by (wprior
jj ′ )jj ′

2. in RFj , change the split rule definition:

▶ sample N ∼ U(J1, pK)

▶ sample N possible predictors with probability (wprior
jj′ )j′

▶ find the best split among them
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Example of prior weights: Protein-Protein Interactions (PPI)

1. from PPI network, Laplacian L = D − Pppi with
Pppi
jj ′ ∈ {0, 1}

Why? L eigendecomposition ∼ graph structure

[Rapaport et al., 2007].

2. W ppi = e−L (heat kernel [Kondor and Lafferty, 2002])
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Example of prior weights: knockouts

1. K ⊂ J1, pK knockouts

2. for j ∈ K and j ′ ∈ J1, pK, “j affects j ′” if
expression of j ′ is significantly different
(Student’s test) before/after knockout
wKO
jj ′ := p-value

3. weights for j /∈ K: weigthed average
(wKO

ℓj ′ )ℓ∈K using similarity of gene sets
that affect j and ℓ
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Alternative ways to use priors (and alternative priors)

▶ using TFBS prior [Cassan et al., 2023]

▶ using chromatine accessibility (ATAC-seq) SCENIC+
[Bravo González-Blas et al., 2023] accessible regions + motif enrichment of these
regions are used to pre-filter candidate enhancers
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Want to know more on network inference?

Some useful benchmarks:

▶ [Saint-Antoine and Singh, 2023]

▶ [Kang et al., 2021]

▶ [Hawe et al., 2019]

▶ [Marbach et al., 2012]: DREAM5 (simulated and real data)
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End of the story!

Questions?
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Credits
▶ Omics image is my own work but using as a base image one of the old illustration of the

ENCODE project

▶ Image on DNA transcription and RNA translation (simplified) is “Transcription and Translation”
by Christinelmiller from Wikimedia Commons

▶ Image on DNA transcription and RNA translation (with sequence) is by OpenStax from
Wikimedia Commons

▶ Image on expression regulation is by Bernstein0275 from Wikimedia Commons

▶ Image on RNA expression experiment is a taken from [Griffith et al., 2015]

▶ Image of GENIE3 method is taken from [Huynh-Thu et al., 2010]

▶ Image of GENIE3 results is taken from [Huynh-Thu et al., 2010]

▶ Image of DIANE network inference is taken from [Cassan et al., 2021]

▶ Image of IRafNet method is taken from [Petralia et al., 2015]

▶ Image of PPI network is by Häuser et al. from Wikimedia Commons

▶ Image of Laplacian eigenvector decomposition is taken from [Rapaport et al., 2007]

▶ Images of TFBS priors and weights is taken from [Cassan, 2022]
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