
Final Internship Report

DiOGenes Clinical Data Analysis

Maria Paula Caldas Rivera — M1 Economics
Toulouse School of Economics

2014-2015

Host institution Inserm UMR 1048 - I2MC
Supervisors Nathalie Viguerie and Nathalie Villa-Vialaneix
Academic tutor Lucie Bottega



Contents
1. Introduction 3

2. Inserm, I2MC and the Obesity Research Laboratory 4
2.1. Inserm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. I2MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. The Obesity Research Laboratory . . . . . . . . . . . . . . . . . . . . . . 4

3. Context and Objective of the Internship 5
3.1. DiOGenes protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Objective of the internship . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Tools and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Statistical Analysis and Results 7
4.1. Missing data and imputation methods . . . . . . . . . . . . . . . . . . . 7

4.1.1. Types of missing data . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2. The structure of the missing data . . . . . . . . . . . . . . . . . . 8
4.1.3. Imputation methods . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2. Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1. PCA on the clean data set . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2. PCA for different imputation methods . . . . . . . . . . . . . . . 12

4.3. Comparison of imputation methods . . . . . . . . . . . . . . . . . . . . . 14
4.3.1. Distance between principal components . . . . . . . . . . . . . . . 14
4.3.2. Imputation error . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4. Conclusion and possible extensions . . . . . . . . . . . . . . . . . . . . . 17

A. R Markdown scripts 19
A.1. clinicAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2. Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2



1. Introduction

This summer I worked as an intern in the Obesity Research Laboratory in the Institute of
Cardiovascular and Metabolic Diseases (I2MC), under the joint supervision of Nathalie
Viguerie (I2MC, INSERM) and Nathalie Villa-Vialaneix (MIAT, INRA). The objective
of my internship was to conduct preliminary research on imputation methods for the
clinical data coming from the DiOGenes trial, a longitudinal dietary protocol that took
place in 2006.

In this report I explain the details of my work, and the analyses undertaken. It is
organized as follows: Section 2 gives a brief presentation of my host institution, section
3 presents the DiOGenes project and the objective of my internship, finally, section 4
presents the statistical analysis performed and the main results.
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2. Inserm, I2MC and the Obesity
Research Laboratory

2.1. Inserm

The French National Institute of Health and Medical Research (Inserm) is a public sci-
entific and technological institute which operates under the joint authority of the French
Ministry of Health and French Ministry of Research1. The Inserm has a wide range of
facilities, including 289 research units, 80% of which are set up within a hospital or uni-
versity. There are currently three research units of the Inserm based at Toulouse. One
of those units, the Institute of Cardiovascular and Metabolic Diseases, acted as my host
institution for the period of April-June.

2.2. I2MC

The new Institute of Cardiovascular and Metabolic Diseases (I2MC) is based in Toulouse,
France. It was founded in 2011 as a joint venture between the Inserm and the Université
Toulouse III - Paul Sabatier, and it is based in the University Hospital Rangueil. Its
research activity focuses on metabolic, cardiovascular and renal diseases. In particular,
the main feature of I2MC is the gathering of scientists together with clinicians working
on metabolic risk factors and their cardiovascular complications2.

The I2MC is composed of 13 research teams working around three main areas:

• Intestine, adipose tissue, obesity and diabetes;

• Thrombosis, atherosclerosis and vessels;

• Heart and kidney.

2.3. The Obesity Research Laboratory

The Obesity Research Laboratory (team 4) is one of the research teams of the I2MC. The
team works on the consequences of the excess of fat mass observed in obesity and aims at
understanding the biological determinants and molecular mechanisms of obesity-related
metabolic complications.

1Inserm website
2I2MC website
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3. Context and Objective of the
Internship

3.1. DiOGenes protocol

The DiOGenes project (Diet, Obesity and Genes) was a multi-disciplinary, multi-center
research project to advance the understanding of how obesity can be prevented and
treated from a dietary perspective. One of the central pillars of the project was the
Pan-European Weight Loss Study, one of the largest longitudinal dietary interventions
worldwide. It consisted of a randomised controlled trial comparing the effect of reduced-
fat diets varying in glycemic index (high vs. low) and protein content (high vs. normal)
on bodyweight in overweight and obese subjects after an initial 8% weight loss1, and was
carried out in 8 different centers across Europe.

The dietary intervention consisted of two phases. The first phase was an 8-week-low-
calorie diet with the objective of 8% or more weight loss. In the second phase, which
lasted 26 weeks, successful individuals were randomized into one of five ad libitum weight
maintenance diets:

• four diets combining high and low protein content with high and low glycemic index
of carbohydrates;

• a control diet according to the national dietary guidelines on healthy diets.

The measurements taken at the beginning and the end of phase one are referred to as
CID1 and CID2, respectively. CID3 represents the measurements taken in after the
26-week ad libitum diet.

A large amount of data originated from this protocol. These data came both from clinical
and psychological examinations as well as from collected tissue samples.

Clinical Data

The clinical data collected during the experimental protocol resulted in a data set of
614 observations (participants) and 444 variables. It is an example of what is commonly
called mixed-type data, containing both numerical and categorical variables.

The variables were organized chronologically and labelled by time step. Although I
worked mainly with the data obtained at CID1, I also explored the missing data structure
of the variables at the time steps CID2 and CID3.

1https://clinicaltrials.gov/ct2/show/NCT00390637
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3.2. Objective of the internship

The primary objective of the internship was to conduct an exploratory analysis of the clin-
ical data collected during the DiOGenes trial, and to study different imputation methods
that could be used for the clinical data.

My work consisted of three main steps:

• Perform an exploratory analysis of the clinical data, focusing on the time steps
CID1, CID2 and CID3

• Research the methods that can be used to handle missing values for the clinical
data.

• Do a comparison of different imputation methods for the data at CID1.

– Analysis through PCA

– Fit of the different methods

3.3. Tools and methods

R and reproducible research

The analysis of the data was performed using the statistical software R and the interface
RStudio. One of the main advantages of using RStudio is that it enables the creation of
dynamic reports thanks to its built-in RMarkdown authoring format. These reports can
be generated in different output formats (html, pdf, tex or Word) and contain the code,
output and graphics created in R.

The idea behind using R Markdown for my reports is that it guarantees the reproducibility
of my analyses and facilitates collaboration with my supervisors. Since the document is
compiled with the whole code being executed, the figures and graphics in the final report
will be faithful to my code.

An extract of my reports can be found in Appendix A.

Packages

For the imputation of the data, I used the packages VIM, missForest, impute (from
Bioconductor) and mixOmics. The first two packages also include some nice visualiza-
tion tools which I used to explore the structure of the missing values.

Principal Component Analysis was performed using the package FactoMineR.
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4. Statistical Analysis and Results

4.1. Missing data and imputation methods

Missing data are unavoidable in clinical research and can have a significant effect on the
conclusions that can be drawn from analyzing the data. One simple and popular approach
is to conduct a complete-case analysis, which means removing all the observations that
have at least one missing value for one of the variables. This method is not advisable in
most situations, and may result in a biased sub-sample of the original data if the missing
values are not randomly distributed.

Moreover, as is the case for the DiOGenes clinical data, the removal of observations with
missing values may not even be a possibility. Even at CID1, which is the time step that
has the least missing values, there is no observation for which we have complete data.

Therefore, different missing data imputation methods need to be analysed. However,
before deciding which methods to explore, it is important to identify first the mechanism
behind the missing data.

4.1.1. Types of missing data

In order to determine which imputation methods can be used in a particular data set,
it is necessary to understand the underlying structure and relationships of the missing
values. After all, the probability of an item to be missing may depend both on other
observed or non-observed variables, as well as on its own value1. Little and Rubin (2002)
defined three missing data mechanisms .

Following the notation of Todorov (2012), let us denote the complete data as X =
{Xo, Xm} where Xo and Xm are the observed and missing parts, respectively. Let R be
the indicator matrix encoding the fact that the observation is or is not missing. Each
element of R is equal to 1 if the corresponding element of X is missing, and 0 otherwise.
The probability of R conditional on the values of the observed and missing values of X,

Pr(R|Xo, Xm)

is what we will define as the missingness mechanism. Therefore, missing data can be
defined as:

1. Missing at random (MAR) implies that missing pattern of X may depend on
the observed part of X, but it does not depend on the unobserved part itself.

1For instance, some people were excluded from the experiment after CID2 because they did not lose
enough weight
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Pr(R|X) = Pr(R|Xo)

The missing data mechanism is said to be ignorable if the data are MAR and the
parameters governing the missing-data mechanism are distinct from the parameters
in the model to be estimated.

2. Missing completely at random (MCAR) is a special case of MAR, which
occurs when the distribution does not depend on Xo either. This implies that
the pattern of missing values is completely random and does not depend on any
variable.

Pr(R|X) = Pr(R)

It is therefore only in this case that complete-case analysis may be used since it will
not lead to a biased sub-sample. In general, it is very rare to find data that have a
MCAR missingness structure.

One example of MCAR is when patients, by accident, forget to check a specific item
in a questionnaire.

3. Missing not at random (MNAR) implies that the distribution of the missing
data depends of Xm. In other words, there is an unknown process which is gener-
ating the missing values. MNAR can appear in one of the two following versions
(or a combination thereof):

• Missingness that depends on the unobserved predictors.

• Missingness that depends on the missing value itself.

An example of data that may be of the type MNAR is that of revenues, where
wealthier individuals avoid reporting their income.

Therefore, the exploration of missing values is crucial for determining their dependencies
to other variables.

4.1.2. The structure of the missing data

The DiOGenes clinical data has large number of missing values, which are missing mainly
because of two reasons. First, there are subjects that stopped participating in the trial
after a certain amount of time (see Table 4.1). This means that the data has, to some
extent, a monotone missing data pattern. The reason behind the missingness may not be
random in this case: it could be that the patients who dropped out were those that were
the least successful at losing weight, the ones who were put in a particular diet, etc. If
this is the case, then the missing value mechanism at these later stages would be MNAR.

The second reason behind the missingness appears to come from the difficulty of admin-
istering certain tests. An example of this can be observed for the variables related to
the Basal Metabolic Rate Test (BMR), have more than 80 percent missing cases. In this
particular case, we assume the data to be of type MAR because the missingness comes
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CID1 CID2 CID3
Number of Observations 614 614 614
Number of Variables 79 67 88
Percentage of missing values 16.56 24.47 40.42

Table 4.1.: Characteristics of main time steps

from the fact that this test in neither a confortable or easy procedure for patients. More-
over, there is no reason to believe that the missing cases depend on the other unobserved
predictors, or in the missing value of the BMR test itself.

As can be seen in Figure 4.1, there are strong dependencies between the missing values
for certain categories of variables. At the final stage of the analysis, I used these “com-
binations” of missing values to recreate the missingness structure at CID1(see section
4.3.2).

Figure 4.1.: Aggregation plot for CID1

In order to explore these relationships further, I performed Hierarchical Clustering on the
shadow matrix R defined in section 4.1.1. The resulting dendrogram shows clearly the
categories or clusters of variables that are jointly missing, and gives valuable supplemen-
tary information to both the aggreation plot and the missingness map.

For instance, it is very interesting to see how the missing values were divided into two main
clusters with the 11 variables having the highest percentage of missing entries located in
the right branch of the tree. These 11 variables are related to the BMR test. Three other
variables that have also a very high percentage of missing values can be seen on the far
left branch and are related to the bioimpedance analysis.

This graphical representation of “missingnes clusters” will be particularly useful to re-
searchers that do not have a medical background or are unfamiliar with the protocol.
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Figure 4.2.: Hierarchical clustering of missing entries

4.1.3. Imputation methods

The choice of imputation method depends greatly on the missingness mechanism of the
data. In particular, if the data has a MNAR structure, it is necessary to specify a
separate model for the missingness, and then introduce it into a more complex model for
the imputation of values.

I explored four different imputation methods for the missing data at CID1. These were:

1. Mean imputation: Missing values are replaced by the column mean. One of the
downsides of this method is that it is ignores possible relations between variables.
Moreover, it reduces the variability of the data and the information that can be
drawn from it.

2. k-nearest neighbor imputation: It is a distance-based, multivariate imputation
method. The k-NN imputation searches for the k nearest observations (respective
to the case which has to be imputed) and replaces the missing value with either the
mean, median, or the most frequent value (for categorical variables) of the found k
neighbors.

I implemented this method with two different functions:

• impute.knn from the package Bioconductor, which was designed for the
imputation of missing gene expression data. The algorithm only works for
numerical data, and selects the k neighbors by an euclidean distance. Missing
values are imputed by the mean of its neighbors.

• kNN of VIM handles mixed-type data, and chooses the neighbors by a vari-
ation of the Gower distance. Numerical missing values are imputed by the
k-neighbors median, and categorical variables by the most frequent observa-
tion.

3. Non-linear iterative partial least squares (NIPALS) algorithm: The al-
gorithm performs a principal component analysis using an iterative procedure on
incomplete data, and can provide estimates for the missing cases. I implement this
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method with the function nipals from mixOmics.

4. missForest: It is a non-parametric, iterative imputation method based on a ran-
dom forest. The method treats the variable of the missing value as predictor and
borrows information from other variables by the resampling-based classification and
regression trees to grow a random forest for the final prediction. The method is re-
peated until the imputed values reach convergence (Liao et al., 2014). This method
handles mixed-type data.

4.2. Principal Component Analysis

Principal component analysis (PCA) is a statistical method used to generate a low-
dimensional representation of the variation in an original multivariate data set. In simpler
words, PCA is a tool for reducing the number of variables of a data set while retaining
as much as possible of the underlying information (measured in terms of variability) in
the data.

This reduced representation comes in the form of principal components, which are “ar-
tificial variables” constructed by a weighted linear combination of the original variables
in the data. These components account for maximal variance (or information), while
remaining orthogonal to each other. They are obtained by an eigenvalue decomposition
of the empirical covariance matrix 1

nXT X.

The number of principal components to be kept can be determined through different
criteria. One commonly used method is the interpretation of the scree plot of the eigen-
values and consists in looking for an “elbow” in the downward-sloping line or barplot.
This point represents a natural break between high and low eigenvalues and thus, the
components right above the kink should be kept in the analysis.

Finally, one of the main features of PCA is that it facilitates the graphical representation
of the main information contained in the data. This is done by plotting the projections
of the variables and individuals on the axes of the principal components. An example of
these graphical representations are the individuals’ factor map and the variables’ factor
map (see Figure 4.4 and Figure 4.5, respectively).

In R, I performed PCA using the package FactoMineR, which allows for mixed-type
data and automatically standardizes the variables. I also used the package factoextra
for some visualizations of the output of PCA.

4.2.1. PCA on the clean data set

The first step in the analysis was to perform a standard PCA on a subset of the original
data with no missing values. This data set was constructed by removing the 14 variables
that had more than 200 missing values, and then keeping only the observations with
complete cases. In the end, the reduced data set contained 298 observations and 65
variables, which corresponds to 48.5 percent of the individuals and 82.3 percent of the
original variables at CID1. Henceforth, I will refer to this data set as the clean data set.
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From looking at the scree plot, I chose to keep the first four principal components, which
jointly explain 44.16 percent of the variance in the data.

Figure 4.3.: Scree plot of PCA for clean data set

For the DiOGenes data at CID1, the reason to perform PCA was to determine which
were the variables that provide the most information in the data, and to identify possible
outliers. As can be seen in Figure Figure 4.4, there are some possible outliers, coming
from different centers. Upon further examination of these individuals and discussion
with my supervisors, we came to realize that the outliers were in fact individuals whose
resistance to insulin was particularly high. They were not removed from the data since
they may bring very valuable information for future analyses.

Figure 4.4.: Individuals’ factor map for PCA in clean data set

4.2.2. PCA for different imputation methods

PCA was then performed on the entire data set at CID1, after imputation of the missing
values through different methods. The main objective of this exercise was to see if there
were any major changes in the composition of the principal components and the projec-
tions of the variables and individuals in these axes. We take the PCA results from the
clean data set as baseline for the different comparisons.

The imputation methods explored were:
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• Mean imputation: It is the default imputation method used by the function PCA()
of FactoMineR when the data matrix contains missing values.

• k-nearest neighbor imputation: performed initially using the package Bioconduc-
tor.

• NIPALS algorithm: Implemented using the package mixOmics.

As can be seen in Figure 4.5, there is a significant change in the projections of the variables
on the principal components — this is particularly evident in the case of components
three and four. Therefore, it is clear that for the clinical data the method of imputation
chosen will have a non negligible impact on the relationships of the variables and on any
downstream statistical analysis.

One of the reasons for these drastic changes in the projections of the variables on the
principal components comes from the fact that these imputation methods modify the
variability of the variables in different magnitudes. For instance, variables with a larger
percentage of missing values will have their missing elements replaced by the column
mean in the case of mean and k-NN imputation. The remaining variables — specifically
those with less than 50% missing cases — will be imputed either by the column mean or
by the column mean of its nearest neighbors.

Another important remark to make is that only some of the imputation methods used
work with mixed-type data, therefore, the number of variables used to construct the
principal components is slightly different in each case.

Figure 4.5.: Comparison of variables’ factor map
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4.3. Comparison of imputation methods

The different imputation methods were compared in two ways. The first was to compare
the methods with respect to the variables’ projections on the principal components. In
order to do this, PCA was performed for various imputed data sets of CID1.

The second, more traditional approach, was to calculate the imputation error for different
methods. In order to do this, I recreated the missingness structure of the data at CID1 in
the clean data set, and then imputed these with through different methods, and compared
the error.

The methods studied were:

• mean imputation

• NIPALS algorithm

• missForest

• k-NN imputation

– impute.knn of Bioconductor

– kNN of VIM

4.3.1. Distance between principal components

The main conclusion that could be drawn from the preliminary PCA analysis is that
the choice of imputation method has an important effect on the relationships between
variables and the information that they provide. However, it is impossible to determine
which imputation methods yield the most similar interpretation in the principal compo-
nents merely by looking at the variables’ factor map.

One way of comparing these different methods is by calculating the two-by-two euclidean
distances between the principal components for the different imputation methods. These
distances are then used to construct a (symmetric) distance matrix, with which we can
perform Hierarchical Clustering and plot the resulting dendogram.

This consists in calculating the pairwise distances between the variables’ coordinates on
the principal components for two different methods. I will demonstrate with a simple
example.

Let us define two matrices, ak and ak′ , that contain the variables’ coordinates on p
principal components (in columns), for n variables (in rows) after a PCA performed on
the imputed (or the clean data set). The euclidean distance between these matrices is
defined as:

dk,k′ := d(ak, ak′
) =

√√√√√ n∑
i=1

p∑
j=1

(
ak

ij − ak′
ij

)2
(4.1)

where
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ak =


ak

11 · · · ak
1p

... . . . ...
ak

n1 · · · ak
np


for k = 1, ..., K different imputation methods.

The resulting distances can thus be used to construct a K ×K euclidean distance matrix
M, where the rows and columns represent the different imputation methods.

M =


0 d1,2 · · · d1,K

0 · · · d2,K
. . . ...

0


To have a clearer visualization of the difference between methods, I performed hierarchical
clustering on this matrix, and plotted the resulted dendogram.

Figure 4.6 gave us a better understanding of the imputation methods used. One partic-
ularly valuable thing that we learned is that imputation by k nearest neighbors yields
very different results depending on the package choice. This is because the function
impute.knn from the package Bioconductor, originally designed for microarray data,
selects the neighbors by looking at the similarities between the variables and not the in-
dividuals. This method thus implicitly supposes that the some subsets of variables have
a similar distribution.

It is also interesting to note that imputation by the mean, which is the least sophisticated
method that we explored, is very similar to the non-parametric method missForest and
k-NN imputation of the package VIM.

Figure 4.6.: Hierarchical clustering for imputation methods
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4.3.2. Imputation error

The final step of the analysis was to compare the accuracy of the different methods by
calculating the normalized root mean squared error (NRMSE) of the imputed data sets.
In order to do this, I tried to recreate the missingness pattern that I observed in the data
at CID1. This meant “randomly” inserting artificial missing values to the clean data
set. However, the process is not entirely random, since I make some restrictions on the
missingness of certain variables.

The artificial missing entries were introduced in two steps:

1. Combinations of missing cases: I identified the most common combinations of miss-
ing values with the use of the aggregation plot of VIM, and calculated their fre-
quencies. I then recreated these combinations in the clean data set.

2. Proportion of missing by column: I recreated some of the MCAR structure of the
data by introducing supplementary missing cases by column, respecting the pro-
portion of missing values per variable.

To better understand the structure of the data at CID1, I first performed a visual anal-
ysis of the missing values of the data without the 14 variables with the highest rate of
missingness. Next, I tried to reproduce the observed patterns on the clean data set, for
which all cases had complete information. Figure 4.7 shows this result.

Training data CID1 reduced

Figure 4.7.: Comparison of the training data and CID1 reduced

In order to compare all of the imputation methods, I generated several training data sets
with a similar missingness structure, and imputed the missing values using four methods:
kNN, missForest, NIPALS and mean imputation.

Finally, the imputation error was calculated with the function mixError of missForest,
which is defined as:

NRMSE =

√
mean [(yimp − ytrue)2]

variance(ytrue)
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where the mean and the variance are calculated over missing entries in the whole matrix
(Oba et al., 2003). We know ytrue because the missing entries are artificial.

As can be seen in Figure 4.8, the method that yields the smallest imputation error is
that of missForest. Surprisingly, the second best imputation method is simple mean
imputation, outperforming the commonly used k-NN method. NIPALS imputation has
very highly variability: for one of the iterations, it gave an incredibly high NRMSE (which
does not appear on the box plot).

kNN NIPALS missForest Mean

0.
8

0.
9

1.
0

1.
1

Imputation error − CID1 reduced

Figure 4.8.: Imputation error for the different methods

4.4. Conclusion and possible extensions

There are some interesting results that came from this preliminary analysis of imputa-
tion methods. First, the imputation method that best fits the data is the non-parametric,
multiple imputation algorithm implemented by the function missForest, outperforming
commonly used methods as k-nearest neighbor, or imputation based on principal compo-
nents (NIPALS). Moreover, the choice of imputation method can lead to major changes
in the underlying relationships between the data, as evidenced in the imputation analysis
through PCA.

The method that appears to be the least reliable is imputation through NIPALS algo-
rithm. On average, NIPALS is more accurate than k-NN imputation, but it can produce
very large errors for some imputations, making it thus less reliable. Another fact that
is very disappointing is that k-NN imputation appears to be less accurate than simple
replacement by the mean. The next step would be to try an implement the method by
changing the criteria that is used to choose the neighbors.

Finally, the good results shown by missForest suggest that it may be worthwhile to
further explore iterative imputation methods.
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A. R Markdown scripts

The following are extracts of the reports I created using R Markdown. The complete
.Rmd, .pdf and .html versions are available upon request.

A.1. clinicAnalysis

Extract of the file clinicAnalysis.

A.2. Imputation

Extract of the file Imputation.
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Clinic data analysis
Maria Paula Caldas

Monday, April 6, 2015

Last update of this file is: 07 juin 2015. This file must be compiled with the following packages:

• FactoMineR
• knitr
• impute (of Bioconductor)
• mixOmics
• ggplot2
• ggthemes
• reshape
• gridExtra
• factoextra (Github)
• RColorBrewer

Preliminary steps

Clinical data can be imported using:

clinic <- read.csv("../data/export_diogenes.csv", sep=";", dec=",",
fileEncoding="latin1")

The data contain the measure of 444 variables for 614 individuals.

Tidying the data

This section shows the preliminary steps taken in order to tidy the data, namely:

• Renaming of variables.
• Encoding categorical variables as factors.
• Encoding numerical variables as numeric.

Code available in complete version

The data will also be separated into different data sets for each time step: CID1, CID2 and CID3. Center, age
and sex will be included in each one of the data sets. The resulting data sets have the following characteristics:

CID1 CID2 CID3
Number of observations 614 614 614
Number of variables 79 67 67
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Missing values in the data

This section will check:

• the number of missing values per variable and per individual;

• global and local analysis of the missing data.

One important remark about the clinical data is that there is no individual for which we have complete
information for all variables. The overall number of missing values also increases at each time step: it is
16.56% at CID1, 24.47% at CID2, and 40.42% at CID3.

Exploratory analysis of variabels in CID1

The largest number of missing values at CID1 is comes from the variables measured in the Basal Metabolic
Rate (BMR) test.
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Number of missing values per variable − CID1

The figure below shows the distribution of missing values per variable and per individual, where the dashed
lines represent the quartiles of each distribution.
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Reduced data set with no missing values

The first step in the analysis will be to perform a standard PCA on a subset of the original data that has no
missing values. This data set is constructed by removing the 14 variables that have more than 200 missing
values. These are:

## [1] "CID1.bio.impedance.FFM" "CID1.bio.impedance.FM"
## [3] "CID1.bio.impedance.fat." "CID1.DEXA.FFM..LEAN.BMC."
## [5] "CID1.DEXA.FM" "CID1.subj.undergone.30..BMR"
## [7] "CID1.BMR.vO2.ml.m." "CID1.BMR.vO2.ml.m..SD"
## [9] "CID1.BMR.vCO2.ml.m." "CID1.BMR.vCO2.ml.m..SD"
## [11] "CID1.mean.RQ" "CID1.mean.RQ.SD"
## [13] "pedmean.CID1" "pedn.CID1"

After removing these columns, only the observations that have no missing values will be kept.

CID1noNA <- CID1[, which(as.numeric(naByCol) < 200)]
CID1noNA <- subset(CID1noNA,complete.cases(CID1noNA)==T)

By doing this, we further restrict our analysis to a total of 298 observations, which correspond to 48.5 percent
of the individuals.

Exploratory analysis of variabels in CID2

Not in extract. Available in complete version

Exploratory analysis of variables in CID3

The following figure gives a more detailed example of the composition of missing values at CID3. To the
right is an inverted bar plot showing the number of missing values per variable, and to the left, a spineplot
showing the proportion of missing values per center. The variables are ordered, going from the one that has
the most missing values (top), to the one that has the least (bottom).

First, we should note that there is no variable at CID3 that has less than 100 missing values per variable.
Moreover, it is interesting to see that the proportion of missing values remains more or less constant for all
centers. Therefore, we can rule out the possibility that the large number of N.A for one particular variable
was due to an error in measurement from one particular center.
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CID3.weight.kg.
CID3.BMI
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It is important to note that there are now more than 120 individuals that have more than 80 missing values
at CID3 (90.91% of the variables at this time step).
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There are 134 individuals for which we have no information at CID3.

Example using package VIM: The following plot (called aggregation plot) presents a quick overview of
the missing values in the complete data set. It shows for the same variables (horizontal axis) all different
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combinations that are present in the observations with missing and non-missing values (vertical axis). The
missing values are presented in red and the complete cases in blue.

The columns have the same order as the original data set. The bar plot on the right represents the frequencies
of observations to the corresponding combinations.
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Reduced data set with no missing values

Not in extract. Available in complete version

Pricipal Component Analysis on CID1

A PCA is performed in order to determine which are the variables that provide the most information in
the data, and to analyse the behavior of outliers. It is performed first on a reduced version of the data
set containing no missing values, and on the complete data set where the values have been imputed using
different imputation techniques. These are:

• Imputation by the mean (default treatment of missing values in package FactoMineR);
• k-nearest neighbor imputation using the function impute.knn of the Bioconductor package;
• Imputation using the NIPALS algorithm, implemented using the mixOmics package.

Analysis of the clinical data at CID1

Standard PCA

PCA is performed using the following command lines:

PCA1 <- PCA(CID1noNA, quali.sup=c(1:2,60), quanti.sup=3, graph=F)

For the selection of the principal components to keep, there are different criteria that can be used, namely:
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• Variance explained criterion: Determining a minimum threshold for the explained cumulative percentage
of variance (generally 70% or 80%). We would need to keep 12 components in our analysis if we were
to explain, for instance, at least 70% of the variance in the model.

• Kaiser criterion: Consists in keeping the all of the principal components that have eigenvalues greater
than 1, which corresponds to 17 components for the current data.

• Catell Scree Test: Consists in taking the second differences in the eigenvalues until the sign changes.
As we can observe in the table below, this method points to choosing only the first two components.

diff(diff(PCA1$eig[,1]))[1:10]

## [1] 3.305896661 1.022774667 -0.917631401 1.173416127 0.005990917
## [6] -0.064583850 0.075119940 0.238299678 -0.230310493 0.189641047

• Scree plot: We select the number of components strictly below a transition point (or “elbow”). In this
case, the scree plot has two “elbows”, one at the third component and another at the fifth component.
This suggests a natural break between high and low eigenvalues for the second or the fourth component.
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Scree plot

The first two criteria suggest using a large number of components in order to capture the most information
from the original data set; however, they have the disadvantage of making the interpretation more difficult.
The goal of using PCA at this stage is to identify the most relevant variables, and thus, keeping a large
number of components would be counterproductive. Therefore, we will analyse only the first four principal
components, which account for 44.16% of the variance in our data.

Variables’ Factor Map The variables’ factor map shows the relationship between the variables and in
the space of the principal components. Given the large number of variables, only the 15 elements that have
the highest contribution on the two dimensions of the plot are drawn. The supplementary categorical variable
(age), does not contribute much to the construction of the first four components, which is why it does not
appear in the figure.
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The variables that contribute most to the construction of the first principal component are those
related to the insulin response of patients. These variables include the insulin concentration measures
during the oral glucose tolerance test (OGTT), the HOMA-IR and dhomares measures, dinsauc.CID1 and
dins0.CID1. Moreover, the variable dmatsu.CID1 appears to be negatively correlated with the insulin
variables. The second principal component is highly correlated with variables related to the weight and
waist measurement of the patients at CID1, dgluauc.CID1 and CID1.90.OGTT.Glucose..mM..

For the third and fourth component, we can see that dhomasec.CID1 is negatively correlated with
dglu0.CID1, CID1.fast.Glucose..mM. and the patient’s weight.

The following bar plots show the variables that contribute most (top 25) in the composition of the first
two components. The red dashed line is located at the point 1/61, and it indicates the expected average
contribution of each variable (if the contribution of variables were uniform).
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Contribution of variables to Dim−4

Individuals’ Factor Map For the interpretation of the individuals’ factor map, it is possible to plot each
individual with respect to the center or his/her sex.

Center: The following two figures show the 10 individuals that contribute the most to the construction of
each dimension. In particular, we can observe that individuals 41, 334, 367 and 560 contributed highly to the
construction of the four principal components. Moreover, we have that individual 41, in particular, seems to
be an outlier for all dimensions.

Upon further exploration of these individuals, we remark that they are all insulin resistant.
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Sex: There is a clear differentiation between men and women in the principal components axes, particularly
for the third and forth component.
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PCA: Imputation by the mean

The function PCA in FactoMineR can also perform an analysis on data with missing values by imputing all
the missing values by each variable’s mean.

PCA1mean <- PCA(CID1, quali.sup=c(1:2,17,57,74), quanti.sup=3, graph=F)

Once again, the scree plot suggests keeping only the first four principal components.
Not in extract. Available in complete version

Variables’ factor map Comparing the variables’ factor map for PC1 and PC2, the interpretation of these
components remains the same. The first component seems to separate the individuals that are insulin-resistant
from those that are not, while the second component is constructed mainly from those variables related to
physical attributes (BMI, mean waist, etc).
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In the figure above, to the right are the variables that were omitted in the first PCA, and, as before, to the
left are the variables that contribute the most to the construction of the first two components. In particular,
the newly included variables CID1.bio.impedance.fat, CID1.bio.impedance.FM, CID1.bio.impedance.FFM and
CID1.DEXA.FFM..LEAN.BMC. are now contributing heavily in the construction of the axes.

Individuals’ factor map Not in extract. Available in complete version

PCA: k-NN imputation

The function impute.knn imputes missing data of an expression matrix, where genes (variables) are located
in rows and samples (observations) in columns. Therefore, we must work with a transposed version of our
data of CID1.

In the case that an individual has more than 80% missing values, then the program halts and reports an
error; which is not the case with the clinical data. If any given variable has more than 50% missing entries,
then the missing values are replaced with the variable’s mean. This is the case for:

## [1] "CID1.DEXA.FFM..LEAN.BMC." "CID1.DEXA.FM"
## [3] "CID1.subj.undergone.30..BMR" "CID1.BMR.vO2.ml.m."
## [5] "CID1.BMR.vO2.ml.m..SD" "CID1.BMR.vCO2.ml.m."
## [7] "CID1.BMR.vCO2.ml.m..SD" "CID1.mean.RQ"
## [9] "CID1.mean.RQ.SD" "pedmean.CID1"
## [11] "pedn.CID1"

Important remark: The k-NN algorithm requires the data to be normalized. Therefore, the data
will be scaled to unit variance and zero mean.
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# Scaling only the numerical variables
CID1sc.matrix <- scale(as.matrix(CID1[,-col.fact]))

# Imputation
CID1knn.sc <- impute.knn(t(CID1sc.matrix), k=5)$data

# Unscale the numeric variables
CID1knn <- unscale(as.matrix(t(CID1knn.sc)),CID1sc.matrix)
CID1knn <- as.data.frame(CID1knn, row.names=1:nrow(CID1))

# Including back Member.Id and Partner.Id
CID1knn$Partner.id <- CID1$Partner.id
CID1knn$Member.id <- CID1$Member.id

PCA for the imputed data:

# PCA
PCA1knn <- PCA(CID1knn, quali.sup=75:76, quanti.sup =1, graph=F)

The scree plot has a kink at the fifth component, therefore the analysis will be conducted keeping only the
first four components, which account to 44.88% of the information in the data.

Figure not available in complete version

Variables’ factor map Not in extract. Available in complete version

Individuals’ factor map Not in extract. Available in complete version

PCA: NIPALS algorithm

The missing values are imputed using the NIPALS algorithm, which handles only numerical variables.
Therefore, 5 factor variables will be excluded from the data set. The data also needs to be scaled to unit
variance before running the nipals algorithm.

The reconstitution of the missing values is done using a determined number of principal components, chosen
by analysing the scree plot.

# NIPALS to choose the number of components
nipals.tune <- nipals(CID1sc.matrix, reconst = TRUE,

ncomp=10, max.iter = 1000)$eig

plot(1:10,nipals.tune[1:10],type="b", pch=20, bty = "l",
ylab="Eigenvalues", xlab="Number of components")
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There is a break at component 6, therefore, the missing values will be imputed using 5 components.

# NIPALS with the chosen number of components
nipals.X <- nipals(CID1sc.matrix, reconst = TRUE, ncomp = 5)$rec

# Only replace the imputation for the missing values
id.na <- is.na(CID1sc.matrix)
nipals.X[!id.na] <- CID1sc.matrix[!id.na]

# Unscaling the variables
nipals.X <- unscale(as.matrix(nipals.X), CID1sc.matrix)

# Data with imputed missing values
CID1nipals <- as.data.frame(nipals.X, row.names=1:nrow(CID1))
CID1nipals$Partner.id <- CID1$Partner.id
CID1nipals$Member.id <- CID1$Member.id

Performing PCA on the data with imputed values we get once again that we should keep only the first four
principal components.

PCA1nipals <- PCA(CID1nipals, quali.sup=75:76, quanti.sup=1, graph=F)

Variables factor map Not in extract. Available in complete version

Individuals factor map Not in extract. Available in complete version

Comparison of the PCA results

The following table summarizes the main features of the analysis.

Table 2: Summary of PCA results for CID1

PCA1 PCA1mean PCA1knn PCA1nipals
Observations 298.00 614.00 614.00 614.00
Variables 65.00 79.00 76.00 76.00
% imputed values 0.00 16.56 16.56 15.20
Num. of components selected 4.00 4.00 4.00 4.00
Cum. % of variance explained 44.16 38.56 44.88 48.87
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Imputation by the mean seems to be the least effective method to use for this data, as it reduces the
information (variance), given by the principal components.

As mentioned before, the interpretation of the first and second principal component remains the same
regardless of the imputation method used. However, the biggest changes are observed in the third and fourth
principal component. The figure below shows the variables’ factor map for the three methods explored: mean
imputation, k-NN, and NIPALS algorithm.
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Session info

## R version 3.2.0 (2015-04-16)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252
## [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C
## [5] LC_TIME=French_France.1252
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RColorBrewer_1.1-2 factoextra_1.0.2 gridExtra_0.9.1
## [4] reshape_0.8.5 ggthemes_2.1.2 ggplot2_1.0.1
## [7] VIM_4.1.0 data.table_1.9.4 colorspace_1.2-6
## [10] Amelia_1.7.3 Rcpp_0.11.6 missForest_1.4
## [13] itertools_0.1-3 iterators_1.0.7 foreach_1.4.2
## [16] randomForest_4.6-10 mixOmics_5.0-4 MASS_7.3-40
## [19] impute_1.42.0 FactoMineR_1.29 DMwR_0.4.1
## [22] lattice_0.20-31 knitr_1.10.5
##
## loaded via a namespace (and not attached):
## [1] vcd_1.3-2 rgl_0.95.1247 class_7.3-12
## [4] zoo_1.7-12 gtools_3.5.0 digest_0.6.8
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## [31] RGCCA_2.0 mgcv_1.8-6 htmltools_0.2.6
## [34] nnet_7.3-9 flashClust_1.01-2 codetools_0.2-11
## [37] bitops_1.0-6 leaps_2.9 nlme_3.1-120
## [40] gtable_0.1.2 magrittr_1.5 formatR_1.2
## [43] scales_0.2.4 KernSmooth_2.23-14 quantmod_0.4-4
## [46] stringi_0.4-1 ROCR_1.0-7 reshape2_1.4.1
## [49] sp_1.1-0 scatterplot3d_0.3-35 robustbase_0.92-3
## [52] xts_0.9-7 tools_3.2.0 DEoptimR_1.0-2
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Imputation at CID1
Maria Paula Caldas

Wednesday, April 29, 2015

Data&Packages

Last update of this file is: 07 juin 2015. Data importation and loading of packages is the same as
clinicAnalysis.Rmd file.

Imputation at CID1

Fist, the variables will be centered and scaled to unit variance.

Imputation methods

The purpose of this section is to compare different imputation methods by performing hierarchical clustering
on the distances of the principal components.

The steps to be taken are:

1. Perform PCA on each of the imputed data sets.

• Determine a number of principal components to keep. This number must be the same for all different
methods.

• Extract the coordinates of the active variables on the principal components. The active variables
must be the same for all the different imputation methods.

2. Calculate the two-by-two euclidean distance between the principal components for the different im-
putation methods. This means, for example, calculating the distance between PC1 under missForest
imputation, and PC1 under k-NN imputation. This is done for the first four components. The same
procedure is carried out for each different pair of methods. Therefore, the 4 imputation methods
explored will lead to 6 entries in an euclidean distance matrix.

3. Perform Hierarchical Clustering on the resulting distance vectors.

Heterogeneous data

There are some imputation methods that are designed to handle heterogeneous data; that is, both categorical
and numerical variables.

missForest Imputation is performed with the parameters of missForest set to default.
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set.seed(19920403)

# Data frame of scaled variables - includes missing values
CID1scaled <- cbind(as.data.frame(CID1sc.matrix), CID1[col.fact])
CID1scaled <- CID1scaled[,colnames(CID1)] #So variables have the same order

# Imputation
CID1.missForest.sc.df <- missForest(CID1scaled, variablewise = TRUE)$ximp

# Unscaling the numerical variables - imputed data
CID1.missForest.sc.matrix <-

unscale(as.matrix(CID1.missForest.sc.df[,-col.fact]),CID1sc.matrix)

# Re-inserting the factor variables.
CID1.missForest.scaled <- as.data.frame(CID1.missForest.sc.matrix)
CID1.missForest.scaled <- cbind(CID1.missForest.scaled,

CID1.missForest.sc.df[,col.fact])
CID1.missForest.scaled <- CID1.missForest.scaled[,colnames(CID1)]

# PCA
PCA1.missForest <- PCA(CID1.missForest.scaled, quali.sup=col.fact,

quanti.sup =3, graph=F)

kNN (package VIM) The function kNN has the default numFun = median, which means that the median
is used to aggregate the k-nearest neighbors in case of a numerical variable. The default for the categorical
variable is to take the level with the most occurrences and random if the maximum is not unique, i.e
catFun=maxCat.

# Complete data
CID1.kNN.sc.df <- VIM::kNN(CID1scaled, k=5, imp_var=FALSE)

# Unscale the numeric variables
CID1.kNN.sc.matrix <- unscale(as.matrix(CID1.kNN.sc.df[,-col.fact]),CID1sc.matrix)

# Re-insert the factor variables.
CID1.kNN <- as.data.frame(CID1.kNN.sc.matrix)
CID1.kNN <- cbind(CID1.kNN, CID1.kNN.sc.df[,col.fact])
CID1.kNN <- CID1.kNN[,colnames(CID1)]

# PCA
PCA1.kNN <- PCA(CID1.kNN, quali.sup=col.fact,

quanti.sup = 3, graph=F)

Homogeneous data

There are other imputation methods that work only on numerical data, these will be used excluding the
categorical variables at CID1.

Mean This method of imputation is applied by default with the function PCA of the package FactoMineR.
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NIPALS algorithm Imputation using the NIPALS algorithm.

Code available in complete version. Same as that of clinicAnalysis.Rmd

k-NN (package Bioconductor) The function impute.knn from the package Bioconductor was created
with the objective of imputing missing gene expression data, using nearest neighbor averaging. The default
for the function is rowmax = 0.5, colmax = 0.8 and k=10. In order to make the results comparable with
those of the VIM package k-NN imputation, the number of neighbors used will be set to k=5.

Remark: This function was designed to impute missing gene expression data from an expression
matrix with genes in the rows and samples in the columns, i.e variables in the rows, and observations
in columns. Therefore, the our data matrix needs to be transposed before running the impute.knn
function.

Code available in complete version. Same as that of clinicAnalysis.Rmd

Comparison of the different methods

# Variables that are common for all PCA analysis.
commonVar <- Reduce(intersect, list(

rownames(PCA1mean$var$coord),
rownames(PCA1.missForest$var$coord),
rownames(PCA1.kNN$var$coord),
rownames(PCA1knn$var$coord),
rownames(PCA1nipals$var$coord)
))

# List with all the coordinates for each method
listClus <- list(

PCA1mean$var$coord[commonVar,1:4],
PCA1.missForest$var$coord[commonVar,1:4],
PCA1.kNN$var$coord[commonVar,1:4],
PCA1knn$var$coord[commonVar,1:4],
PCA1nipals$var$coord[commonVar,1:4])

names(listClus) <- c("mean", "missForest", "kNN", "knn", "NIPALS")

# This function calculates the euclidean distance between two methods
distMethods <- function(x,y){sqrt(sum((x-y)**2))}

# Initializing the distance matrix
clus <- matrix(NA, length(listClus), length(listClus),

dimnames = list(names(listClus), names(listClus)))

# Completeing the distance matrix
for(i in 1:ncol(clus)) {

for(j in i:ncol(clus)) {
# Filling the upper triangular matrix
clus[i,j] <- distMethods(listClus[[i]], listClus[[j]])
# Making the matrix symmetric
clus[j,i] <- clus[i,j]

3



}
}
# Dendogram
plot(hclust(as.dist(clus)))
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hclust (*, "complete")
as.dist(clus)
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Some observations:

• Imputation with the function kNN from the VIM is very close to simple mean imputation. This is may
be due to the fact that default for the function for aggregating the k-nearest neighbors is to replace by
the median.

• k-NN imputation varies greatly depending on the package used. The function impute.knn is designed
for microarray data, and imputes missing elements by avaraging those non-missing elements of its
neighbors. It selects the k-nearest neighbors for imputation calculating the euclidean distance. The
function kNN, as mentioned before, replaces the missing case by the median of its neighbors, and uses a
variation of the Gower distance.

Fit of different imputation methods

Objective

The objective of this section is to construct a function that recreates the missingness structure of the data
at CID1 in a reduced, complete case, data set. Afterwards, the data with the artificial missing values will
be imputed with the different methods shown above, and the error of each method will be calculated. This
process will be repeated several times to see the difference in the distribution of the errors of each method.
The reduced clean data set was already examined in the clinicAnalysis.Rmd file. It was constructed by
removing the variables that had more than 200 missing values, and then keeping only the individuals with
complete information.

Analysis of missingness structure

In order to recreate the model of missingness in the reduced data set, it is interesting to have a look at the
missingness structure of the data at CID1 from different perspectives:

• Look at the structure of the missing values at the whole data in CID1, paying close attention to the
structure of the variables with more than 200 missing values.

• The missingness structure at CID1 after the removal of these 14 variables. To facilitate a graphical
interpretation, the variables that have complete cases will be taken out for the aggregation plots and
missingness maps..
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Reduced CID1

I use the aggregation plot (package VIM) to see which are the most common combinations of missing
variables.
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I then create a data set combR, that contains combinations of missing values with their percentages.

# aggrR: list of class "aggr" containing the following components:
# x: the data used.
# tabcomb: indicator matrix for the combinations of variables
# percent: the percentage of these combinations.

# combR: data frame of the indicator matrix and the percentages.

aggrR <- aggr(CID1[which(as.numeric(naByCol) < 200)], plot=FALSE)
combR <- as.data.frame(aggrR$tabcomb)
colnames(combR) <- colnames(CID1noNA)
combR$percent <- aggrR$percent
combR = combR[order(combR$percent, decreasing=TRUE),]
combR <- combR[-1,] # Remove the most frequent combination (complete cases)

There are some combinations of the missing values that are worth looking into:

• The most common combination is that of dfm.CID1, dffm.CID1, dfp.CID1, dfmet.CID1, which is
present in at least 7.82% of the observations in the reduced data.

• The second most common combination is that of CID1.U.Album..24h. . .mg., CID1.fast.U.creat..24h. . .mmol.,
CID1.U.C.pept..24h. . . nmol., present in at least 2.77% of the observations in the reduced data.

• The third combination is dfenergy.CID1, dfecho.CID1, dfefat.CID1, dfeprot.CID1, dfealc.CID1,
dfgi.CID1, dfesfa.CID1, dfemufa.CID1, dfepufa.CID1, corresponding to at least 2.28% of the
observations in the reduced data.

• The forth combination is the addition of combination 2 and 3.

• The fifth combination is that of dbaeckwicid1, dbaecksicid1, dbaecklicid1.
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I will focus in the combinations 1,2,3 and 5. First, I wish to know the total percentage of observations in the
reduced data set that have this joint structure of missing values.

combs <- c(1:3,5,8,11)
real.percent <- NULL

for (i in combs){
# Get the columns that have missing values
cols <- which(combR[i,]==1)
# I set a condition, a vector of ones
cond <- combR[i,cols]
# I get the rows that have the same pattern
rows <- which(apply(combR[,cols], 1, function(x)all(x==cond)))
# Get the total percentage of observations that have the same pattern
real.percent[i] <- sum(combR$percent[rows])

}

# Comparing the percentages
real.percent[combs]
combR$percent[combs]

## [1] 14.495114 9.934853 6.840391 3.420195 2.280130 1.465798
## [1] 7.8175896 2.7687296 2.2801303 1.1400651 0.8143322 0.8143322

It is clear that only using the percentages from aggr() leads to an underestimation of the frequency of certain
patterns. Therefore, I need to adjust the percentages accordingly when performing my recreation.

There are other patterns that are apparent in both the aggregation plot and the missingness map, but since
they differ slightly, they are not gathered under one simple combination in the combR matrix. I identify one
other combination of 31 variables.

More details in complete version

Simulation in clean data set Given the long iteration time of the loop and the restrictions of the
computer, I perform the iteration only for 10 repetitions. A loop with more iterations should be run in the
future to guarantee robust results.

# Data frames
complete <- CID1[, which(as.numeric(naByCol) < 200)]
complete <- subset(CID1noNA,complete.cases(CID1noNA)==T)
CID1reduced <- CID1[, which(as.numeric(naByCol) < 200)]

comp.var <- which(colSums(is.na(CID1))==0)
index.comb <- combs # Combinations that I wish to recreate
col.factor <- which(sapply(complete, is.factor)==T)

# Initializing the error matrices
err.NIPALS <- NULL
err.kNN <- NULL
err.missForest <- NULL
err.mean <- NULL

set.seed(19920304)
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for (n in 1:10){

train <- complete

# Combinations from combR
for(i in index.comb){

train[sample(nrow(train), ceiling(nrow(train) * real.percent[i]/100)),
which(combR[i,]==1)] <- NA

} # closing combR loop

# Combinations observed
percent.suppcomb <- sum(combR$percent[xrows])/100
train[sample(nrow(train), ceiling(nrow(train) * percent.suppcomb)),

cols.suppcomb] <- NA

# Percentage of missing values per variable
prop.miss.var <- apply(CID1reduced, 2, function(x){ sum(is.na(x))/614 })

# MCAR missingness
for (j in 1:ncol(train)){

# Rate of MCAR values
MCAR.col.rate <- prop.miss.var[j] - colSums(is.na(train))[j]/nrow(train)

if (MCAR.col.rate>0){

# Cases that don't have NAs yet
IND <- which(!is.na(train[,j]),arr.ind=TRUE)
ntest <- floor(nrow(train)*MCAR.col.rate)

# Introducing some random NAs
ind.test <- IND[sample(1:length(IND),ntest)]
train[ind.test,j] <- NA

} else
train[,j] <- train[,j]

} # closing MCAR loop

# Scale
train.sc.mx <- scale(as.matrix(train[,-col.factor]))
train.scaled <- cbind(as.data.frame(train.sc.mx), train[,col.factor])
train.scaled <- train.scaled[,colnames(train)] # To leave in original order

complete.scaled <- scale(as.matrix(complete[,-col.factor]))
complete.scaled <- cbind(as.data.frame(complete.scaled), train[,col.factor])
complete.scaled <- complete.scaled[,colnames(complete)]

# Mean
train.mean <- apply(train.sc.mx, 2, function(x)ifelse(is.na(x), mean(x, na.rm=TRUE), x))
train.mean <- as.data.frame(train.mean)
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# NIPALS

train.nipals <- nipals(train.sc.mx, reconst = TRUE, ncomp = 5)$rec
id.na <- is.na(train.sc.mx)
train.nipals[!id.na] <- train.sc.mx[!id.na]

# missForest
train.missForest<- missForest(train.scaled, variablewise = TRUE)$ximp

# VIM::kNN
train.kNN <- VIM::kNN(train.scaled, k=5, imp_var=FALSE)

## Error

err.kNN <- c(err.kNN,
mixError(train.kNN, train.scaled, complete.scaled)[1])

err.missForest <- c(err.missForest,
mixError(train.missForest, train.scaled,

complete.scaled)[1])
err.NIPALS <- c(err.NIPALS,

mixError(train.nipals, train.scaled[,-col.factor],
complete.scaled[,-col.factor])[1])

err.mean <- c(err.mean,
mixError(train.mean, train.scaled[,-col.factor],

complete.scaled[,-col.factor])[1])

} # closing the original loop

Checking to see if the training data (the last one) has a somewhat similar missingness structure than the
reduced data at CID1.

Training data CID1 reduced

Finally, the resulting boxplot for the imputation errors.
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boxplot(cbind(err.kNN, err.NIPALS, err.missForest, err.mean), outline = FALSE,
main = "Imputation error - CID1 reduced",
names = c("kNN", "NIPALS", "missForest", "Mean"))

kNN NIPALS missForest Mean

0.
8

0.
9

1.
0

1.
1

Imputation error − CID1 reduced

Remark The boxplot has the option outline = FALSE because for one iteration, the NIPALS
algorithm results is a very large imputation error, therefore, it is best to leave it out.

## NRMSE NRMSE NRMSE NRMSE NRMSE NRMSE
## 0.9911044 0.9244304 1.0007677 0.9748392 67.0697904 1.0525049
## NRMSE NRMSE NRMSE NRMSE
## 1.0324168 0.8775216 0.9735896 0.8799608

Therefore, the best method appears to be non-parametric iterative imputation by missForest. NIPALS
algorithm has a very high variability, to the point of generating one imputation with an extremely high error.
Finally, it appears that simple mean imputation outperforms k-NN imputation with the package VIM.

CID1

Relationship between the variables with missing values:

# Shadow matrix
mat <- matrix(, nrow = nrow(CID1), ncol = ncol(CID1))
for(column in 1:ncol(CID1)){

mat[, column] <- sapply(CID1[,column], is.na)
}
mat <- ifelse(mat==TRUE, 1, 0)
colnames(mat) <- colnames(CID1)

# Hierarchical clustering
hc <- hclust(dist(t(mat)))
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Relationship between missing values
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In CID1, there are 14 variables that have more than 200 missing values, which corresponds to 17.72% of the
variables in that time step. Out of these variables:

• Half may be missing together. This is to recreate the joint missingness of the variables
CID1.subj.undergone.30..BMR, CID1.BMR.vO2.ml.m., CID1.BMR.vO2.ml.m..SD, CID1.BMR.vCO2.ml.m.,
CID1.BMR.vCO2.ml.m..SD, CID1.mean.RQ, CID1.mean.RQ.SD in the original data. These variables
have a missingness rate of 81.92%.

• the remaining variables can be divided into three pairs, which have a different proportion of missing
values. These are:

– CID1.bio.impedance.FFM, CID1.bio.impedance.FM, CID1.bio.impedance.fat. with 36.48% of
missing.

– CID1.DEXA.FFM..LEAN.BMC., CID1.DEXA.FM with 62.05% of missing.
– pedmean.CID1, pedn.CID1 with 56.35% of missing.

The next step in the analysis would be to select 17.72% of the variables in the reduced data set,
and introduce missing values with the rates of missingness specified above.
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Session info

## R version 3.2.0 (2015-04-16)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252
## [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C
## [5] LC_TIME=French_France.1252
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RColorBrewer_1.1-2 reshape_0.8.5 ggthemes_2.1.2
## [4] ggplot2_1.0.1 VIM_4.1.0 data.table_1.9.4
## [7] colorspace_1.2-6 Amelia_1.7.3 Rcpp_0.11.6
## [10] missForest_1.4 itertools_0.1-3 iterators_1.0.7
## [13] foreach_1.4.2 randomForest_4.6-10 mixOmics_5.0-4
## [16] MASS_7.3-40 impute_1.42.0 FactoMineR_1.29
## [19] DMwR_0.4.1 lattice_0.20-31 knitr_1.10.5
##
## loaded via a namespace (and not attached):
## [1] vcd_1.3-2 rgl_0.95.1247 class_7.3-12
## [4] zoo_1.7-12 gtools_3.5.0 digest_0.6.8
## [7] plyr_1.8.2 chron_2.3-45 evaluate_0.7
## [10] e1071_1.6-4 gplots_2.17.0 minqa_1.2.4
## [13] gdata_2.16.1 SparseM_1.6 car_2.0-25
## [16] TTR_0.22-0 nloptr_1.0.4 rpart_4.1-9
## [19] Matrix_1.2-1 rmarkdown_0.6.1 proto_0.3-10
## [22] splines_3.2.0 lme4_1.1-7 stringr_1.0.0
## [25] foreign_0.8-63 igraph_0.7.1 pheatmap_1.0.2
## [28] munsell_0.4.2 RGCCA_2.0 mgcv_1.8-6
## [31] htmltools_0.2.6 nnet_7.3-9 flashClust_1.01-2
## [34] codetools_0.2-11 bitops_1.0-6 leaps_2.9
## [37] nlme_3.1-120 gtable_0.1.2 magrittr_1.5
## [40] formatR_1.2 scales_0.2.4 KernSmooth_2.23-14
## [43] quantmod_0.4-4 stringi_0.4-1 ROCR_1.0-7
## [46] reshape2_1.4.1 sp_1.1-0 scatterplot3d_0.3-35
## [49] robustbase_0.92-3 xts_0.9-7 tools_3.2.0
## [52] DEoptimR_1.0-2 abind_1.4-3 parallel_3.2.0
## [55] pbkrtest_0.4-2 yaml_2.1.13 cluster_2.0.1
## [58] caTools_1.17.1 quantreg_5.11
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