Machine Learning - TP

Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr
http://www.nathalievilla.org

IUT STID (Carcassonne) & SAMM (Université Paris 1)

Formation INRA, Niveau 3
Packages in R

R is provided with basic functions but more than 3,000 packages are available on the CRAN (Comprehensive R Archive Network) for additional functions (see also the project Bioconductor).

- **Installing new packages** (has to be done only once)
 - with the command line:
    ```r
    install.packages(c("nnet","e1071","rpart","car","randomForest"))
    ```
 - with the menu (Windows or Mac OS X)

- **Loading a package** (has to be done each time R is re-started)
  ```r
  library(nnet)
  ```
Working directory

All files in proper directories/subdirectories can be downloaded at: http://www.nathalievilla.org/docs/formation_inra, either as individual files or as a full zip file inra-package.zip.

The companion script ML-scriptR.R is made to be run from the subdirectory ML/TP of the provided material. For the computers in the classroom, this can be set by the following command line:

```
setwd("/home/fp/Bureau/inra-package/ML/TP")
```

If you are using Windows or Mac OS X, you can also choose to do it from the menu (in “Fichier” / “Définir le répertoire de travail”).
In any case, you must adapt the working directory if you want to run the script on another computer!
Outline

1. Introduction: Data importation and exploration
2. Neural networks
3. CART
4. Random forest
Outline

1. Introduction: Data importation and exploration
2. Neural networks
3. CART
4. Random forest
Use case description

Data kindly provided by Laurence Liaubet described in [Liaubet et al., 2011]:

- microarray data: expression of 272 selected genes over 57 individuals (pigs);
- a phenotype of interest (muscle pH) measured over the 57 individuals (numerical variable).

file 1: genes expressions
file 2: muscle pH
Load data

Loading genes expressions
```
d <- read.table("../..\Data\sel_data.csv", sep=";", header=T, row.names=1, dec="", )
dim(d)
names(d)
summary(d)
```

Loading pH
```
pH <- scan("../..\Data\sel_ph.csv", dec="", )
length(pH)
summary(pH)
```
Basic analysis

```r
# Data distribution
layout(matrix(c(1,1,2),ncol=3))
boxplot(d,main="genes expressions")
boxplot(pH,main="pH")
```
Correlation analysis

```r
# Correlation analysis
heatmap(as.matrix(d))
```
Correlation with pH

```r
# Correlation with pH
pH.cor <- function(x) { cor(x,pH) }
totalcor <- apply(d,1,pH.cor)
hist(totalcor,main="Correlations between genes expression\nand pH",xlab="Correlations")
```

![Graph showing correlations between genes expression and pH](image)
Classification and regression tasks

1. **Regression**: predict pH (numerical variable) from genes expressions.
 - **Useful to**: help verify the strength of the relation between genes expressions and pH; help understand the nature of the relation.

2. **Classification**: predict whether the pH is smaller or greater than 5.7 from genes expressions.
 - (toy example)

```r
# Classes definition
pH.classes <- rep(0, length(pH))
pH.classes[pH > 5.7] <- 1
table(pH.classes)
```
Initialization and training sample selection

```r
set.seed(16011357)
training <- sample(1:ncol(d), round(0.8*ncol(d)), replace=F)
```

Matrices definition

```r
d.train <- t(d[,training])
pH.train <- pH[training]
d.test <- t(d[,-training])
pH.test <- pH[-training]
```

Data frames definition

```r
r.train <- cbind(d.train,pH.train)
r.test <- cbind(d.test,pH.test)
colnames(r.train) <- c(colnames(d.train),"pH")
colnames(r.test) <- c(colnames(d.train),"pH")
r.train <- data.frame(r.train)
r.test <- data.frame(r.test)
```
Train/Test split: classification framework

Vectors definition
pHc.train <- pH.classes[training]
pHc.test <- pH.classes[-training]

Data frames definition
c.train <- cbind(d.train,pHc.train)
c.test <- cbind(d.test,pHc.test)
colnames(c.train) <- c(colnames(d.train),"pHc")
colnames(c.test) <- c(colnames(d.train),"pHc")
c.train <- data.frame(c.train)
c.test <- data.frame(c.test)

Transforming pHc into a factor
c.train$pHc <- factor(c.train$pHc)
c.test$pHc <- factor(c.test$pHc)
Training / Test sets (short) analysis

```r
layout(matrix(c(1,1,2,3,3,4), ncol=3, nrow=2, byrow=T))
boxplot(d.train, main="genes expressions (train)"
boxplot(pH.train, main="pH (train)"
boxplot(d.test, main="genes expressions (test)"
boxplot(pH.test, main="pH (test)"
table(pHc.train)
table(pHc.test)
```
Outline

1. Introduction: Data importation and exploration
2. Neural networks
3. CART
4. Random forest
Loading the data (to be consistent) and nnet library

```r
# Loading the data
load("../..//Data/train-test.Rdata")
```

MLPs are unusable with a large number of predictors (here: 272 predictors for 45 observations only in the training set) ⇒ selection of a relevant subset of variables (with LASSO):

```r
# Loading the subset of predictors
load("../..//Data/selected.Rdata")
```

MLPs are provided in the nnet package:

```r
# Loading nnet library
library(nnet)
```
Simple use: MLP in the regression framework

Training

```r
# Simple use: MLP with p=3 and no decay
set.seed(17011644)
nn1 <- nnet(d.train[, selected], pH.train, size=3, decay=0, maxit=500, linout=T)
```

Analysis

```r
print(nn1)
summary(nn1)
# Training error and pseudo-R2
mean(((pH.train - nn1$fitted)^2))
1 - mean(((pH.train - nn1$fitted)^2)/var(pH.train))
# Predictions (test set)
pred.test <- predict(nn1, d.test[, selected])
# Test error and pseudo-R2
mean(((pH.test - pred.test)^2))
1 - mean(((pH.test - pred.test)^2)/var(pH.train))
```
Predictions vs observations

```r
plot(pH.train, nn1$fitted, xlab="Observations", ylab="Fitted values", main="", pch=3, col="blue")
points(pH.test, pred.test, pch=19, col="darkred")
legend("bottomright", pch=c(3, 19), col=c("blue", "darkred"), legend=c("Train", "Test"))
abline(0, 1, col="darkgreen")
```
Check results variability

```r
define a neural network with set.seed and then train it:
set.seed(17012120)
nn2 <- nnet(d.train[, selected], pH.train, size=3, decay=0, maxit=500, linout=T)
```

Summary

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn1</td>
<td>30.8%</td>
<td>44.9%</td>
</tr>
<tr>
<td>nn2</td>
<td>99.8%</td>
<td>-34!!</td>
</tr>
</tbody>
</table>
Simple use: MLP in the classification framework

Training

```r
# Simple use: MLP with p=3 and no decay
set.seed(17011716)
nnc1 <- nnet(pHc~., data=c.train, size=3, decay=0, maxit=500, linout=F)
```

Analysis

```r
print(nnc1)
summary(nnc1)
# Predictions
nnc1$fitted
# Recoding
pred.train <- rep(0, length(nnc1$fitted))
pred.train[nnc1$fitted > 0.5] <- 1
# Training error
table(pred.train, c.train$pHc)
sum(pred.train != c.train$pHc) / length(pred.train)
```
Test error

```r
# Predictions and recoding
raw.prd.test <- predict(nnc1, c.test)
pred.test <- rep(0, length(raw.prd.test))
pred.test[raw.prd.test > 0.5] <- 1
# Test error
table(pred.test, c.test$pHc)
sum(pred.test != c.test$pHc)/length(pred.test)
```

Summary

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observations</td>
<td>Predictions</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

Overall misclassification rate:

- Train: 2.22%
- Test: 45.45%
Tuning MLP with the **e1071** package

Search for the best parameters with 10-fold CV

```r
library(e1071)
set.seed(1643)
t.nnc2 <- tune.nnet(pHc~., data=c.train[, c(selected, ncol(c.train))], size=c(2,5,10), decay=10^(-c(10,8,6,4,2)), maxit=500, linout=F, tunecontrol=tune.control(nrepeat=5, sampling="cross", cross=10))
```

Basic analysis of the output

```r
# Looking for the best parameters
plot(t.nnc2)
```
Best parameters?

```
summary(t.nnc2)
t.nnc2$best.parameters
# Selecting the best MLP
nnc2 <- t.nnc2$best.model
```
Training error

```r
pred.train <- rep(0, length(nnc2$fitted))
pred.train[nnc2$fitted > 0.5] <- 1
table(pred.train, c.train$pHc)
sum(pred.train != c.train$pHc)/length(pred.train)
```

Predictions and test error

```r
raw.pred.test <- predict(nnc2, c.test)
pred.test <- rep(0, length(raw.pred.test))
pred.test[raw.pred.test > 0.5] <- 1
table(pred.test, c.test$pHc)
sum(pred.test != c.test$pHc)/length(pred.test)
```

Summary

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnc1</td>
<td>2.22%</td>
<td>45.45%</td>
</tr>
<tr>
<td>nnc2</td>
<td>0%</td>
<td>22.27%</td>
</tr>
</tbody>
</table>
Outline

1. Introduction: Data importation and exploration
2. Neural networks
3. CART
4. Random forest
Regression tree training

Training with the rpart package

```r
library(rpart)
# Regression tree
tree1 <- rpart(pH~., data=r.train, control=rpart.control(minsplit=2))
```

Basic analysis of the output

```r
print(tree1)
summary(tree1)
plot(tree1)
text(tree1)
```
Resulting tree

tree1$where # leaf number
tree1$frame # nodes features
Performance analysis

```r
# Training predictions and error
pred.train <- tree1$frame$yval[tree1$where]
mean((pred.train - r.train$pH)^2)
1 - mean((pred.train - r.train$pH)^2)/var(pH.train)
# Test predictions and error
pred.test <- predict(tree1, r.test)
mean((pred.test - r.test$pH)^2)
1 - mean((pred.test - r.test$pH)^2)/var(pH.train)
# Fitted values vs True values
plot(pH.train, pred.train, xlab="Observations", ylab="Fitted values", main="", pch=3, col="blue")
points(pH.test, pred.test, pch=19, col="darkred")
legend("bottomright", pch=c(3,19), col=c("blue", "darkred"), legend=c("Train","Test"))
abline(0,1, col="darkgreen")
```
Summary

Numerical performance

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree1</td>
<td>96.6%</td>
<td>11.6%</td>
</tr>
<tr>
<td>nn2</td>
<td>99.8%</td>
<td>-34!!</td>
</tr>
</tbody>
</table>

![Graph showing the performance of CART models](image)
Classification tree training and tuning

Training with the rpart package and tuning with the e1071 package

```r
# Random seed initialization
set.seed(20011108)
# Tuning the minimal number of observations in a node (minsplit; default value is 20)
t.treec1 <- tune.rpart(pHc~., data=c.train,
                        minsplit=c(4,6,8,10), tunecontrol=
                        tune.control(sampling="bootstrap",
                                      nboot=20))
```

Basic analysis of the output

```r
plot(t.treec1)
```
Tuning results

\[\text{t.treec1$best.parameters} \]

\[\text{treec1 <- t.treec1$best.model} \]
Basic analysis of the best tree

```
summary(treec1)
plot(treec1)
text(treec1)
```

```
treec1$where  # leaf number
treec1$frame  # nodes features
```
Predictions and errors

Training set

```r
# Make the prediction
pred.train <- predict(treee1, c.train)
# Find out which class is predicted
pred.train <- apply(pred.train, 1, which.max)
library(car) # to have the "recode" function
pred.train <- recode(pred.train, "2=1;1=0")
# Calculate misclassification error

table(pred.train, pHc.train)
sum(pred.train != pHc.train)/length(pred.train)
```

Test set

```r
pred.test <- predict(treee1, c.test)
pred.test <- apply(pred.test, 1, which.max)
pred.test <- recode(pred.test, "2=1;1=0")
table(pred.test, pHc.test)
sum(pred.test != pHc.test)/length(pred.test)
```
Classification performance summary

Overall misclassification rates

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnc1</td>
<td>2.22%</td>
<td>45.45%</td>
</tr>
<tr>
<td>nnc2</td>
<td>0</td>
<td>22.27%</td>
</tr>
<tr>
<td>treec1</td>
<td>0</td>
<td>45.45%</td>
</tr>
</tbody>
</table>
Outline

1. Introduction: Data importation and exploration
2. Neural networks
3. CART
4. Random forest
Random forest training (regression framework)

Training with the randomForest package

```r
library(randomForest)
set.seed(21011144)
rf1 <- randomForest(d.train,pH.train,importance=T,
                       keep.forest=T)
```

Basic analysis of the output

```r
plot(rf1)
rf1$ntree
rf1$mtry
rf1$importance
```
Predictions and errors

Training set (oob error and training error)
mean((pH.train - rf1$predicted)^2)
rf1$mse
1 - mean((pH.train - rf1$predicted)^2)/var(pH.train)
1 - mean((pH.train - predict(rf1,d.train))^2)/var(pH.train)

Test set
pred.test <- predict(rf1,d.test)
mean((pH.test - pred.test)^2)
1 - mean((pH.test - pred.test)^2)/var(pH.train)

MSE

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn1</td>
<td>30.8%</td>
<td>44.9%</td>
</tr>
<tr>
<td>nn2</td>
<td>99.8%</td>
<td>-34</td>
</tr>
<tr>
<td>rf1</td>
<td>84.5%</td>
<td>51.2%</td>
</tr>
</tbody>
</table>
Predictions vs observations

```r
plot(pH.train, rf1$predicted, xlab="Observations", ylab="Fitted values", main="", pch=3, col="blue")
points(pH.test, pred.test, pch=19, col="darkred")
legend("bottomright", pch=c(3,19), col=c("blue", "darkred"), legend=c("Train","Test"))
abline(0,1, col="darkgreen")
```
Importance analysis

```r
layout(matrix(c(1,2),ncol=2))
barplot(t(rf1$importance[,1]),xlab="variables", ylab="% Inc. MSE",col="darkred",las=2, names=rep(NA,nrow(rf1$importance)))
barplot(t(rf1$importance[,2]),xlab="variables", ylab="Inc. Node Purity",col="darkred", las=2,names=rep(NA,nrow(rf1$importance)))
which(rf1$importance[,1]>0.0005)
```
Random forest training (classification framework)

Training with the randomForest package (advanced features)

```r
set.seed(20011203)
rfc1 <- randomForest(d.train, factor(pHc.train), 
  ntree=5000, mtry=150, sampsize=40, nodesize=2, xtest=d.test, ytest=factor(pHc.test), 
  importance=T, keep.forest=F)
```

Basic analysis of the output

```r
plot(rfc1)
rfc1$importance
```
Predictions and errors

```r
# Training set (oob error and training error)
table(rfc1$predicted, pHc.train)
sum(rfc1$predicted != pHc.train) / length(pHc.train)
# Test set
table(rfc1$test$predicted, pHc.test)
sum(rfc1$test$predicted != pHc.test) / length(pHc.test)
```

Overall misclassification rates

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnc1</td>
<td>2.22%</td>
<td>45.45%</td>
</tr>
<tr>
<td>nnc2</td>
<td>0</td>
<td>22.27%</td>
</tr>
<tr>
<td>treec1</td>
<td>0</td>
<td>45.45%</td>
</tr>
<tr>
<td>rfc1</td>
<td>33.33%</td>
<td>36.36%</td>
</tr>
</tbody>
</table>
Importance analysis

```r
# Importance analysis
layout(matrix(c(1,2), ncol=2))
barplot(t(rfc1$importance[,3]), xlab="variables", ylab="Mean Dec. Accu.", col="darkred", las=2, names=rep(NA, nrow(rfc1$importance)))
barplot(t(rfc1$importance[,4]), xlab="variables", ylab="Mean Dec. Gini", col="darkred", las=2, names=rep(NA, nrow(rfc1$importance)))
which(rfc1$importance[,3] > 0.002)
```

Genetic variability or transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism.

BMC Genomics, 12(548).