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ABSTRACT

The substantial development of high-throughput
bio-technologies has rendered large-scale multi-
omics datasets increasingly available. New
challenges have emerged to process and integrate
this large volume of information, often obtained from
widely heterogeneous sources. Kernel methods
have proven successful to handle the analysis of
different types of datasets obtained on the same
individuals. However, they usually suffer from a lack
of interpretability since the original description of
the individuals is lost due to the kernel embedding.
We propose novel feature selection methods that
are adapted to the kernel framework and go beyond
the well established work in supervised learning by
addressing the more difficult tasks of unsupervised
learning and kernel output learning. The method
is expressed under the form of a non-convex
optimization problem with a `1 penalty, which is
solved with a proximal gradient descent approach.
It is tested on several systems biology datasets
and shows good performances in selecting relevant
and less redundant features compared to existing
alternatives. It also proved relevant for identifying
important governmental measures best explaining
the time series of Covid-19 reproducing number
evolution during the first months of 2020. The
proposed feature selection method is embedded in
the R package mixKernel version 0.7, published on
CRAN.

INTRODUCTION

The recent development of high-throughput bio-technologies
has rendered large-scale multi-omics datasets increasingly
available. Biology has now entered the world of “big data”,
with a pressing need to manage, process and optimize the
use of large-scale “-omics” sequencing measurements. In
addition to the obvious challenge of having to deal with
large volumes of information from widely heterogeneous
sources, the underlying biological nature of such data poses
the additional issue of high complexity, due to the multiple
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types of interactions existing within and across multiple levels
in living organisms. This triggers the need to consider these
multi-layered biological systems as a whole, and to develop
accurate and innovative methods to integrate multiple and
heterogeneous levels of information collected on the same
individuals.

To address this challenge, kernel methods have proven
useful and successful (1) because they offer a natural
theoretical framework to handle the analysis of different
types of data / features observed on the same individuals.
They can also address the issue of the huge dimensionality
by summarizing each level of information with a similarity
matrix between individuals (whose number is generally
small enough), providing a solution efficient in terms of
computational cost and storage. Relevant kernels can embed
expert knowledge and handle the high dimension much better
than the Euclidean distance, notorious for behaving poorly
when the number of features is large (2). They have been
successfully used in computational biology for exploratory (3)
or prediction (4, 5, 6) purposes and to integrate datasets in a
supervised (7) or unsupervised fashion (8, 9).

However, as stated in (10, 11), kernel methods usually
suffer from a lack of interpretability. The initial description
of the individuals in terms of features is lost during the kernel
embedding, which is known as the pre-image problem (12).
In addition, the information of thousands of descriptors is
often summarized in a few similarity measures, which can be
strongly influenced by a large number of irrelevant descriptors.

To address these issues, feature selection is a widely used
strategy: it consists in selecting the most promising features
during or prior the analysis. The purpose of this work is to
extend feature selection for kernel methods while addressing
two rarely met purposes: unsupervised (exploratory) learning
and multiple output or non numerical output predictions
(which include multiple regression or multi-class supervised
classification for instance).

Overview of feature selection.
Feature selection has attracted a large amount of attention
during the past years: (13) made a tentative comprehensive
overview and classification of the most popular methods for
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feature selection, accompanied by an open-source repository
and benchmark datasets http://featureselection.asu.edu. In
addition, implementations of the methods are provided in the
Python package scikit-feature. These methods are generally
organized in three main families: embedded methods, where
the selection is embedded in a prediction method, filter
methods, where the selection is made independently of any
prediction purpose and, wrapper methods, where the selection
is made in relation with but not embedded into a prediction
method.

As visible through their description, embedded and wrapper
methods are thus proposed in the framework of univariate
supervised learning, where the selection is combined with
the prediction objective to obtain a trade-off between number
of selected features and accuracy of the prediction. This is
the case, for instance, of the popular lasso approach (14)
and its many variants. These embedded methods rely on the
`1 penalty to performs feature selection. Other approaches
are performed prior to model estimation but are based on
the variable to predict (wrapper methods): Relief algorithm
(15) computes the quality of attributes according to how well
their values distinguish between individuals with different
outcomes that they aim at predicting and the Conditional
Informative Feature Extraction (CIFE, (16)) uses a similar
idea, computing an information theory criterion. Also note
that embedded methods can be adapted to the semi-supervised
framework, exploiting the similarities between samples to
propagate labels on unlabeled data (17).

On the contrary, filter methods, like the popular spectral
feature selection (SPEC) approach (18), can address both
unsupervised and supervised problems (and are usually very
simple and fast) but they suffer from a major drawback
because they perform selection by computing a score
independently for each feature: they are thus very sensitive
to redundancies in features and not able to account for this
redundancy. For the two purposes that are addressed in this
article (unsupervised learning and multiple output prediction),
only a few alternatives to filter methods already exist.

Feature selection in the unsupervised setting.
For unsupervised learning, the issue of addressing feature
selection globally among the set of features is usually handled
in two main directions: some approaches, like the Multi-
Cluster Feature Selection (MCFS, (19)), or the Convex
Principal Feature Selection (CPFS, (20)), aim at selecting an
ensemble of features that recover at best the projection of
the data or the data reconstruction on the first axes of the
Principal Component Analysis (PCA). Another direction is to
incorporate the assumption that the data have an underlined
cluster structure and to define a quality criteria that recovers
this cluster structure. The first step of MCFS is based on
this principle but other methods relying on it include, e.g.,
the Nonnegative Discriminative Feature Selection (NDFS,
(21)) and the Unsupervised Discriminative Feature Selection
(UDFS, (22)).

All these methods are better designed than the simpler
filter methods to address feature redundancy but they are also
based on a priori assumptions that the relevant information
on the data is contained in the first axis of the PCA or in
an (unobserved) cluster structure. Closely related approaches

can aim at the reconstruction of a local linear embedding of
the data (as in (23)) to provide a more flexible setting. Also,
more recent works (24, 25) use an unsupervised embedding
approach in which the feature selection is incorporated in
neural network auto-encoders.

Contrary to these works, the proposed approach will not aim
at performing a data compression that optimizes the ability to
reconstruct the original information but rather at preserving
at best the original relations between individuals. This is a
useful property for exploratory purpose where the user wants
to be able to recover clusters, search for atypical individuals,
or find a peculiar pattern between individuals, with no a priori
knowledge.

Feature selection in the multiple output prediction setting.
The issue of feature selection for multiple output prediction
has been studied at an even lesser extent than the unsupervised
setting. Among the few existing works in this framework, most
are not able to deal with non numeric outputs. Apart from the
straightforward approach that consists in combining results
of independent feature selections obtained for every output,
the currently existing approaches are linear methods such
as multivariate Gaussian lasso (26, 27), sparse Partial Least
Squares (sPLS, (28)) or regularized Canonical Correlation
Analysis (CCA) (29) that all select features in the predictors
jointly associated to all outputs (or to a selection of outputs) by
the addition of a `1 penalty to the loss function of the multiple
output regression problem.

These approaches improve the interpretability of the results
and were proven useful for a variety of applications, including
eQTL studies (associations between SNP and gene expression,
(30)), metabolomics data (31) or associations between gene
expression and phenotypes (29) but they are restricted to
linear relations between predictor features and outputs. More
recent works go beyond the linear framework, extending
feature selection in regression trees, Relief methods (32)
or information theory methods (33) for multiple outputs.
However, all these approaches are still limited to numeric or
multiple class outputs.

Feature selection for kernel methods.
Among efficient methods that have been developed for
feature selection, some explicitly use a kernel framework.
(34) provide a comprehensive overview of these approaches,
explicitly describing their relations and advantages or
drawbacks. Most works on feature selection for kernel use
a feature based kernel, i.e., one kernel for each feature
in the input dataset. The earliest work in this line is the
Feature Vector Machine approach (35), where the feature
kernel computes a similarity between a given kernel and all
the other features. However, since the feature mapping maps
each feature into a space having the same dimension than
the original number of features, this approach is not adapted
to cases where the number of features is larger than the
number of observations. (36) proposes a sparse additive model
(SpAM) approach, which is a linear model using the feature
kernels for predictors and a group-lasso based penalty that
performs feature selection. One weakness of this approach is
that it only targets additive models.
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Several feature selection approaches use the Hilbert-
Schmidt independence criterion (HSIC). Greedy HSIC
(37) uses the HSIC criterion for dependence maximization
between the selected features and the outputs with forward /
backward selection strategies that allow to compute a kernel
based on multiple (selected) features. A remaining drawback
of this approach is that forward/backward elimination
strategies are heuristics that provide approximated solutions
and are often far from the optimum in practice.

The Hilbert-Schmidt Feature Selection (HSFS (38)) can
be seen as a continuous relaxation of Greedy HSIC. It
first transforms the original features into a single vector by
associating weights to every features (each observation is
thus represented by a single value that is the weighted sum
of its original feature values) and performs feature selection
using a kernel based framework with `∞ penalty. HSIC lasso
(34) extends the Greedy HSIC approach in order to avoid
selecting multiple redundant features. HSIC lasso is based on
the prediction of an output kernel by a linear model with a
sparse penalty. This approach allows to predict any type of
outputs and aims at selecting the features that would reproduce
at best the relations between the observations, as described
by the output kernel. Block HSIC lasso (39) is based on the
HSIC lasso algorithm and uses the Block HSIC estimator in
order to reduce the memory complexity of HSIC lasso.

Finally, the only earlier works that directly perform feature
selection in multivariate kernels are (40, 41, 42). These
methods train a kernel regression or classification in which
the features are selected by weights obtained by minimization
of a prediction error penalized with the `1 norm. Note that
those methods are restricted to the supervised framework with
numerical output.

Our contribution beyond the state-of-the-art.
In the current paper, these approaches are extended and a
feature selection algorithm is proposed, which does not rely
on any structural assumption on the data but explicitly takes
advantage of the kernel structure in a multivariate manner. It
both allows for unsupervised feature selection or for feature
selection targeting an arbitrary (kernel based) output. In both
situations, the main idea is to simultaneously learn weights,
wj , for each feature j, that correspond to the feature’s
relevance in the task at hand, as in (40, 41, 42).

The computation of the weights are obtained
simultaneously for all features, in order to better account
for colinearities or redundancies between features. A `1
penalty is added in the learning process to obtain a sparse
w=(w1,...,wp), which corresponds to a feature selection.
This allows to define a flexible framework for feature
selection, which is also able to incorporate a priori latent
cluster structure or known relations between descriptors if
needed. Simulations on various types of problems (both
supervised and unsupervised) and various types of output
datasets (multivariate numeric outputs or time series) show
the effectiveness of the proposed methods and its great
stability compared to alternative approaches.

In summary, the new approach for kernel method:

• extends the supervised case to the unsupervised setting
and to arbitrary kernel output, without the need of
structural or a priori assumptions on the data;

• accounts for colinearities between features to reduce
redundancy in the selection;

• is based on a general framework flexible enough to
incorporate a priori knowledge on the data if available.

Our feature selection method for kernels is implemented
in Python, using numpy https://numpy.org/ and autograd
https://github.com/HIPS/autograd and inspired by the
PyOptim https://github.com/rflamary/PyOptim library. It is
embedded in the select.features function of the R
package mixKernel version 0.7 published on CRAN, using
reticulate https://rstudio.github.io/reticulate.

MATERIALS AND METHODS

In this section, the proposal is described, by first presenting
the common kernel framework before the two versions
(unsupervised and kernel output feature selections) are
developed. Then, a generic approach is provided, to extend
these methods so as they can include a priori knowledge
(structure between features or clusters, for instance). Finally,
the experimental settings for the different simulations
performed to evaluate the variants of the method are described.

Description of the kernel framework.
We consider a set of n observations (xi)i=1,...,n,
taking values in X =Rp (xi=(xij)j=1,...,p). The
observations are represented through their pairwise
similarity using a kernel, Kx, such that Kx :Rp×Rp→R
is symmetric (∀x,x′∈Rp, Kx(x,x

′)=Kx(x′,x)) and
positive (∀N ∈N, ∀(αi)i=1,...,N ⊂R, ∀(xi)i=1,...,N ⊂Rp,∑N
i,i′=1αiαi′Kx(xi,xi′)≥0). In the sequel, Kx will denote

the symmetric positive semi-definite (n×n)-matrix with
entries (Kx(xi,xi′))i,i′=1,...,n. The feature map associated
with Kx is φ :Rp→Fx, where Fx is the unique Hilbert space
such that

∀x,x′∈Rp, Kx(x,x′)=〈φ(x),φ(x′)〉Fx .

In some cases (output kernel prediction), a second set
of observations (yi)i=1,...,n is associated to the (xi)i and
observed on the same individuals i∈{1,...,n}. The (yi)i take
values in an arbitrary space, Y , with no specific requirements
apart from the fact that objects in Y are also well described by
another kernel, Ky :Y×Y→R. This case includes any type
of outputs, such as multiple numerical variables (for which
the standard Euclidean scalar product can be used as a kernel
for instance) or multiple class variables. Similarly to Kx, the
feature map associated with Ky is denoted by ψ, the feature
space by Fy and the kernel matrix by Ky∈Rn×n.

Two distinct problems are then addressed: the first,
described in Section “Unsupervised feature selection”, relates
to the selection of a subset of d features within the p original
features in Rp, such that d�p and that the selected features
limit the information loss. Contrary to most methods, which
select the features by maximizing the prediction quality of
a given quantity, this selection is done in an unsupervised
setting, mostly aiming at preserving the topology structure of
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the original kernelKx (i.e., the relations / similarities between
individuals as described by Kx).

As stated in the introduction, this property is useful for
exploratory purpose when one wants to recover clusters, find
outliers, or design a topology of his/her samples. In addition
to that appealing property, using a kernel Kx allows to handle
very general similarities between input feature vectors xi,
which are often more adapted than the standard Euclidean
scalar product. This is particularly true when the dimension
p is large, in which case the Euclidean distance is notoriously
non informative (2).

The second issue, described in Section “Kernel output
feature selection” extends feature selection to association
studies. More precisely, the aim is to obtain a subset of
d�p features that best explain the (yi)i or, rather, that best
explain the way these individuals relate to each other as
described byKy . Again, this approach has several advantages:
first, it allows to define prediction functions for predicting
objects taking values in a very general space Y (as long as
the pre-images of elements in Fy are easily accessible). In
addition, again, it allows to incorporate in the model very
general similarities between input and output vectors and these
similarities can be more adapted to describe the relations
between samples than the standard Euclidean scalar product.

We propose to address both problems by introducing a
vector of p weights w=(wj)j=1,...,p, taking values in {0,1}p
and such that wj=1 is equivalent to select feature j. A new
kernel, Kw

x , with associated kernel matrix Kw
x , can be then

defined from Kx by:

Kw
x (xi,xi′) :=Kx(w ·xi,w ·xi′),

in which “ · ” is the element-wise multiplication: w ·
x :=(w1x1,...,wpxp)

>=Diag(w)x. In short, Kw
x is the

restriction of Kx to the d features selected through the
definition of w. In the following, Dw∈Rp×p is used as a
shortcut for Diag(w).

This approach gives a natural way to choose w by deriving
a criterion that is optimized to obtain a trade-off between
feature selection and quality of the objective (the preservation
of the kernel structure of Kx or the association with the
kernel Ky , respectively). However, the optimization problem
associated with such an objective is a discrete optimization
problem on {0,1}p that is usually hard to solve (the problem
would be NP complete with an exhaustive search having
to consider all the 2p possible solutions). We thus consider
a continuous relaxation with wj≥0 and in which feature
selection is conveniently handled using an `1 penalization that
promotes a sparse solution. This approach was first presented
in (40) for Support Vector Machine (SVM) with Gaussian
kernels and further developed in (41, 42). It is also similar to
the approach used in (25) for unsupervised feature selection
with auto-encoders.

Notations used thorough the article are described in Table 1

Unsupervised feature selection.
A penalized distortion criterion. As stated in the previous
section, a natural way to select features in Rp that preserves

Notation Explanation
n number of observations
p number of features
d number of selected features
X =Rp input space
Y output space
Kx :Rp×Rp→R input kernel
Ky :Y×Y→R output kernel
Kx∈Rn×n input kernel matrix with entries

(Kx(xi,xi′))i,i′=1,...,n

Ky∈Rn×n output kernel matrix with entries
(Ky(yi,yi′))i,i′=1,...,n

Fx input feature space
Fy output feature space
φ :Rp→Fx input feature map
ψ :Y→Fy output feature map
w∈(R+)p vector of weights
w(k)∈(R+)p vector of weights at iteration k

of the optimization algorithm
Dw∈Rp×p shortcut for Diag(w)
Kw
x kernel defined as

Kw
x (xi,xi′) :=Kx(w ·xi,w ·xi′)

Kw
x kernel matrix associated with Kw

x

Table 1. Table of notations.

at best the original kernel structure of Kx would be to search
for w∈{0,1}p, solution of:

argmin
w∈{0,1}p

‖Kw
x −Kx‖2F (1)

with w such that
p∑
j=1

wj≤d,

for a given chosen d controlling the sparsity of the solution and
where ‖.‖F stands for the Frobenius norm. But the problem
above is NP hard, making it particularly difficult to solve in
practice for binary constraints on the weights w. In addition,
binary constraints can be too stringent: removing a feature
j might have an important effect to the full kernel matrix
Kw
x and this effect would be worth compensated by allowing

continuous values wj′ 6=1 for a feature j′ that is correlated to
feature j. This is why a relaxation of the discrete optimization
problem of Equation (1) is proposed in favor of positivity
constraints on the weights together with a regularization term
that will promote sparsity in the weights.

The relaxation leads to the following optimization problem:

w∗ := argmin
w∈(R+)p

‖Kw
x −Kx‖2F +λ‖w‖1, (2)

in which λ>0 is a penalization parameter that controls
the trade-off between the minimization of the distortion
(Frobenius norm between the original kernel and the kernel
based on selected features) and the sparsity of the solution
(similarly to d in the original discrete optimization problem).
To do so, the distortion is penalized using ‖.‖1, the `1 norm:
‖z‖1 :=

∑p
j=1 |zj |.
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The weights w are often called scaling parameters or
slack variables. Equation (2) contains a highly non-convex
data fitting term, ‖Kw

x −Kx‖2F , that depends on the kernel,
but is, otherwise, very similar to the lasso estimator (14).
The `1 norm is non-differentiable in 0, which promotes
exact sparsity. When the regularization parameter, λ, is
small, the solution of the problem converges to the original
kernel with w=1p, an all-ones vector, and when the
regularization parameter increases, w, becomes sparse and
performs automatic feature selection. (25) shows that such
a penalization of the weights efficiently enforces sparsity
as compared to a direct penalization on the coefficients of
their auto-encoder. In addition, it proved efficient in terms of
controlling the redundancy of selected features, since feature
selection is performed globally.

This unsupervised version of the proposed framework will
be termed Unsupervised Kernel Feature Selection (UKFS) in
the sequel.

Optimization of a non-convex/non-smooth problem.
Problem (2) is a non-convex and non-smooth optimization
problem. It can be reformulated as

argmin
w∈(R+)p

f(w)+λg(w) (3)

where f is a smooth non-convex function (f(w)=‖Kw
x −

Kx‖2F ) and g is the non differentiable `1 norm promoting
sparsity in w (g(w)=‖w‖1).

We propose to solve the optimization problem using
proximal gradient descent (43, 44) that is particularly well
adapted to `1 regularized problems. Among those methods,
a Forward-Backward Splitting (FBS) is used, which can be
seen as a majorize-minimization (MM) algorithm. When the
function f is gradient Lipschitz with a Lipschitz constant η,
the variation of the function is limited and it can be bounded
around a given w̃ by

f(w)+λg(w)≤f(w̃)+∇wf(w̃)>(w−w̃)+

η

2
‖w−w̃‖2+λg(w).

The FBS algorithm is actually equivalent to iteratively
minimizing the upper bound of the previous equation and thus,
each iteration leads to a decrease in the objective value. If w(k)

denotes the values of the weights at iteration k, w(k+1) is thus
obtained by minimizing the right hand side of the previous
equation around w̃=w(k), which is also equivalent to solving

w(k+1)= argmin
w∈(R+)p

1

2

∥∥∥w−w(k+ 1
2
)
∥∥∥2+ λ

η
g(w), (4)

where w(k+ 1
2
)=w(k)− 1

η∇wf(w
(k)) can be seen as a

gradient descent step wrt f .
The right hand side of Equation (4) is known as the proximal

operator of λ
η g, noted proxλ

η
g(w

(k+ 1
2
)). When g is the `1

norm, this operator has the following explicit form: ∀j=
1,...,p,

w
(k+1)
j =sign

(
w
(k+ 1

2
)

j

)
×
(
|w(k+ 1

2
)

j |− λ
η

)
+

with sign(u) the sign of u and (u)+=max(0,u) the positive
part of u. This operator is known as the component-wise soft
thresholding and one of its important property is that, due to
the threshold, the iterations of the algorithm are sparse, which
ensures the sparsity of the solution even in the case of early
stopping along the iterations. It also allows for a clear feature
selection, as opposed to other approaches proposed to solve
the lasso that are based on re-weighting and provide sparsity
only at convergence (45).

Also note that the Lipschitz constant is used for a 1
η gradient

step: this choice ensures a decrease at each iteration but
leads to a very slow convergence in practice. Some works
have shown that using a larger step leads to an important
speedup. For instance, one approach known to provide a good
gradient step is the so-called Barzilai-Borwein (BB) rule (46).
This rule first approximates the Hessian matrix as a scaled
identity and then uses this estimation to provide a coarse
optimal step. It was proposed for non-convex FBS in (47)
in conjunction with a line search that ensures a decrease of
the objective value at each iteration. Note that this strategy
has been used on simulations using the smooth Gaussian
kernel, but not on those based on the Bray-Curtis dissimilarity
because the Hessian is undefined for non-smooth functions
(see Section “Evaluation”).

Finally, the non-convexity of problem (3) means that there
is no hope to get a global minimum but, while FBS has
been originally proposed for convex optimization, it has been
used in several non-convex applications such as Iterative Hard
Thresholding (48). It has also been shown that the algorithm
converges to a stationary point on a wide class of non-convex
optimization problems (49). Finally, note that optimizing
scaling parameters in kernels has already been performed with
success in the past using descent algorithms (40, 42) and
seems to work well in practice despite the lack of convergence
to a global minimum.

Kernel output feature selection.
A penalized association criterion. This section aims at
selecting features best able to explain (yi)i∈Y , described
through the kernel Ky . This type of kernel association
problem between (xi)i and (yi)i has already been addressed
in (50, 51), under the name of Input Output Kernel Regression
(IOKR). It is equivalent to learning a function h :X →Fy
that predicts the output feature vector ψ(yi)∈Fy associated
with a given xi∈X (see Figure 1, left, for an illustration of
the method and notations). In the IOKR framework (50), this
is done by choosing an operator-valued kernel (OVK), Kx,
which is a bilinear form from X ×X into B(Fy,Fy), where
B(Fy,Fy) is the set of all linear operators from Fy to Fy .
This kernel Kx allows to define a Reproducing Kernel Hilbert
Space (RKHS), H, that is a subspace of the linear operators
from X into Fy in which h is taken. A simplification of this
framework is obtained by defining the OVK from the feature
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map φ induced by an input scalar kernel. In this case, h can be
seen as a composition of the feature map φ with an operator V
from Fx to Fy .

ψ

Y

Fx Fy

X = Rp

hφw

V

ψ

Y

Fx Fy

h

V

φ

X
Figure 1. Comparison between the diagram of the simplified IOKR
framework (left) and of the proposed approach (right). The latter jointly learns
the vector of weights w associated with the features and a function h :Rp→
Fy that approximates the output feature map ψ. In the proposed approach,
h is modeled as h(w ·x)=V (φw(x)),∀x∈Rp where φw(x)=φ(Dwx)
and V (.) is an operator from Fx to Fy .

This approach has the advantage of being able to handle
a set of possible functions for h, H⊂{X →Fy}, that is both
very general and well characterized by the OVK RKHS theory.
In particular, it is equipped with a scalar product ‖.‖H, which
is used to add a ridge penalty to a measure of the goodness-of-
fit between (xi)i and (yi)i, as follows:

argmin
h∈H

n∑
i=1

‖h(xi)−ψ(yi)‖2Fy+λ1‖h‖
2
H. (5)

Technical details, including the precise definition ofH, are left
for the next section for the sake of clarity.

Following an idea similar to the one already described in the
Section “Unsupervised feature selection”, weights w∈(R+)p

are introduced to be jointly learned with h. These weights are
used as scaling factors for the input features in (xi)i, replacing
xi by Dwxi in Equation (5) to perform the feature selection:
a feature j is then not selected when wj=0 and selected
otherwise. The proposed approach is illustrated in Figure 1.

Sparsity is induced on w by the use of a `1 penalization,
which leads to the following regression problem:

min
h∈H,w∈(R+)p

f(h,w)+λ1‖h‖2H+λ2‖w‖1, (6)

where f(h,w)=
∑n
i=1‖h(Dwxi)−ψ(yi)‖2Fy and λ1>0

and λ2>0 are two regularization parameters. The first
regularization term is used to control the complexity of the
function h and the `1 norm of the vector w performs feature
selection. This version of the framework will be termed Kernel
Output Kernel Feature Selection (KOKFS) in the sequel.

Similarly to the approach developed by (52) for their
learning of anchor points in their convolutional kernel
networks, the optimization scheme alternates between two
steps (a) weights w are fixed and Equation (6) is minimized
with respect to h; (b) h is fixed and weights w are updated
using one pass of a proximal gradient descent using the
explicit computation of f(h,w). (52) perform one stochastic
gradient descent step that is well suited to their `2 penalization

Algorithm 1 Algorithm for solving Problem (6).

Initialize w(0) with w(0)
j ≥0 for j=1,...,p

For k=0,...,T−1 (or until convergence)
1. Learn h(k+1) with fixed w(k):

h(k+1)=argmin
h∈H

f(h,w(k))+λ1‖h‖2H (7)

2. Proximal gradient descent step on w(k+1) with fixed
h(k+1)

Output: w(T )

whereas, here, a proximal gradient descent step is used
because it is more adapted to the `1 penalization.

The sketch of the optimization approach is provided in
Algorithm 1, while details on the two steps are provided
in the next two sections. Note that this algorithm is also
exactly a FBS that computes the minimum in w∈(R+)p

of minh∈H
[
f(h,w)+λ1‖h‖2H

]
+λ2‖w‖1. The two steps

described below thus describes the exact computation of the
gradient (in w) of this function, thanks to the envelop theorem
(53). Similarly to the unsupervised case, one cannot hope
to get a global minimum but the algorithm converges to a
stationary point on a wide class of non-convex problems (49).

Solution in h for a fixed w(k). When w(k) is fixed, the
optimization problem of Equation (7) is convex in h and has
already been solved in (50, 51) in the setting of the RKHS
theory for vector-valued functions. A vector-valued RKHS
is uniquely characterized by an operator-valued kernel: Kx :
Rp×Rp→B(Fy,Fy). This framework extends the concept
of scalar-valued kernel. Here, the special case of RKHS for
vector valued-functions is used, with associated kernel of the
form Kx(x,x′)=Kx(x,x′)IFy ,∀x,x′∈Rp, where IFy is the
identity operator. The associated RKHS is denoted H and is a
subset of linear operators from Rp to Fy . Its specific simple
form has been chosen because the size of the feature space
Fy is not necessarily finite so the complexity of the set of all
linear operators {Rp→Fy} can potentially be very large. The
functions h in H can be written as: h(z)=V (φ(z)),∀z∈Rp
where V is a linear operator from Fx to Fy .

When using this operator-valued kernel, the closed-form
solution of the optimization problem (7) for a fixed w(k) is
given by:

∀z∈Rp, h(k+1)(z)=

n∑
i=1

αi(z)ψ(yi), (8)

where α(z)=(λ1In+Kw(k)

x )−1κw(k)(z) with In the

identity matrix of size n, Kw(k)

x the (n×n) kernel
matrix with [Kw(k)

x ]i,i′=Kx(Dw(k)xi,Dw(k)xi′) and
κw(k) :Rp→Rn a function defined as κw(k)(z)=

[Kx(Dw(k)x1,z),...,Kx(Dw(k)xn,z)]
>, ∀z∈Rp.

In practice, h(k+1) cannot be computed explicitly because
the output feature vectors, ψ(yi), do not have an explicit form



i
i

“mariette˙etal˙NARGB2021” — 2022/3/8 — 11:32 — page 7 — #7 i
i

i
i

i
i

Nucleic Acids Research, YYYY, Vol. xx, No. xx 7

and can potentially be infinitely long. However, h(k+1) is
only used through the computation of f(h(k+1),w(k)) (that
evaluates h(k+1) at points of the form z=w ·x), which can be
explicitly computed using the kernel trick in the output feature
space Fy .

Proximal gradient descent step on w(k+1). The minimization
problem of (6) in w with a fixed h is a non-convex
and non-smooth problem that is solved using a proximal
gradient method (a single pass is used at each step of
the method). Similarly to (41), f̃h(k+1) =f(h(k+1),.) is first
approximated at the current point w(k) by a linear function,
thanks to its first-order Taylor expansion: f̃h(k+1)(w)≈
f̃h(k+1)(w(k))+5f̃h(k+1)(w(k))T (w−w(k)), valid for w in
the neighborhood of w(k). Hence, to ensure that w stays
close to w(k), a ridge penalty, ‖w−w(k)‖22, is added to the
optimization problem that thus becomes:

w(k+1)=

argmin
w∈(R+)p

[
5f̃h(k+1)(w

(k))>(w−w(k))

+
η(k)

2
‖w−w(k)‖22+λ2‖w‖1

]
,

where 1
η(k)

is called the step size because it is involved in a
gradient descent step similar to the one already described for
the unsupervised case.

Similarly to the unsupervised case, this optimization
problem is solved using a proximal approach and leads to
obtain an explicit form for the update:

w(k+1)= (9)(
w(k)− 1

η(k)
5 f̃h(k+1)(w

(k))− λ2

η(k)

)
+

,

where (u)+ is the Rp vector with entries max(uj ,0), ∀u∈Rp.
When further replacing h(k+1) by the solution given

in Equation (8), the following expression is obtained for
5f̃h(k+1)(w(k)): ∀j=1,...,p,(

5f̃h(k+1)(w
(k))
)
j
= (10)

2Tr
(
(Kw(k)

x A−In)KyAEj

)
,

where Tr is the trace operator, A=(λ1In+Kw(k)

x )−1 and
Ej ∈Rn×n, for j=1,...,p, is defined as: ∀i=1,...,n,

[Ej ]·,i=
∂

∂wj

(
κw(k)(Dwxi)

)∣∣∣∣
w=w(k)

, (11)

where [Ej ]·,i denotes the ith column of the matrix Ej . The
proof of these results are given in Supplementary material.

In conclusion, the implementation of Algorithm 1 thus
reduces to the steps described in Algorithm 2.

Algorithm 2 Practical implementation of Algorithm 1.

Initialize w(0) with w(0)
j ≥0 for j=1,...,p

For k=0,...,T−1 (or until convergence)
1. Compute Kw(k)

x : [Kw(k)

x ]ii′=Kx(Dw(k)xi,Dw(k)xi′)
for i,i′=1,...,n
2. Compute the p matrices E1,...,Ep as in Equation (11)

3. for j=1,...,p, w(k+1)
j =(

w
(k)
j − 2

η(k)
Tr((Kw(k)

x A−In)KyAEj)− λ2
η(k)

)
+

Output: w(T )

Extensions with prior knowledge regularization.
Note that the proposed framework is flexible enough to
allow the incorporation of additional a priori knowledge. For
instance, in the unsupervised feature selection framework,
an interesting case is when some a priori relations between
these features are given. This can happen when the features
represent taxons for which an interaction network is known
or simply using the observed correlations between features as
a proxy of their relations. These relations can be represented
by a graph, G, whose p vertices correspond to the p original
features and whose edges (that can be weighted with positive
weights) are the relations between these features.

Similarly to (21, 54, 55), this information can be used to
perform a regularization based on the Laplacian of G, LG and
leads to extend Equation (2) to the following optimization
problem

w∗ := argmin
w∈(R+)p

‖Kw
x −Kx‖2F +µw>LGw+λ‖w‖1,

(12)

with µ>0 a second regularization parameter. The
optimization problem related to this extension can be
solved similarly to the original problem.

Note that other types of a priori information, like a
cluster structure, could also be incorporated to the original
optimization problem of Equation (2) or of Equation (6)
by introducing alternative constrains in a similar fashion.
Two such extensions are already implemented in the
package mixKernel: the structure based regularization of
Equation (12) and another extension that uses kernel PCA
(56) and that is designed to reduce the distance distortion in
dimension reduction tasks.

Experimental evaluation setup.
Benchmark datasets for the evaluation of the unsupervised
feature selection. To evaluate the accuracy of the
unsupervised version of the proposed approach, a benchmark
of three biological datasets was analyzed: two microarray
datasets, denoted in the sequel by “Carcinom” and “Glioma”,
provided in the Python package scikit-feature, and a DNA
barcoding dataset, denoted by “Koren”, available from the R
package mixOmics (28).
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“Carcinom” and “Glioma” datasets respectively contain
the expression of 9,182 genes obtained from 174 samples
and 4,434 genes from 50 samples. To perform the feature
selection on these datasets, UKFS was used with the Gaussian
kernel Kx(xi,xi′)=e−σ

∗‖xi−xi′‖2 with σ∗ chosen so as to
minimize the reproduced inertia in the projection on the first
two axes of the KPCA with kernel Kx.

“Koren” includes the abundance of 973 operational
taxonomic units (OTUs) collected from 43 samples.
UKFS was used with the kernel induced by the Bray-
Curtis dissimilarity between samples on raw abundances,

dBC(xi,x
′
i)=

∑p
s=1 |xis−xi′s|∑p
s=1(xis+xi′s)

(p is the number of observed
OTUs). An interesting property of this dissimilarity is that
it avoids the need to use one of the standard pre-processing
steps to account for the compositional nature of this dataset
(e.g., total sum scaling normalization (TSS) and centered log
ratio transformation (CLR)).

UKFS was then compared to several alternatives:

• two methods based on the computation of a score: the
Laplacian score (denoted by lapl) (57) and SPEC (18);

• three methods based on a learning approach constrained
to a sparse representation. These methods were mostly
designed for clustering (or are based on the implicit
assumption that samples are structured into subgroups)
and require the a priori definition of a number of
clusters: MCFS (19), NDFS (21) and UDFS (22);

• one neural network: the concrete autoencoder, denoted
Autoencoder (58). This method can handle supervised
and unsupervised frameworks and the unsupervised
setting is used for the purpose of comparison.

Except for Autoencoder that requires large computational
resources and CPU computing, simulations were all
performed on the same 40-node computer without
concurrent access. The Python implementation
available from the scikit-feature package (13)
https://github.com/jundongl/scikit-feature was used for
lapl, SPEC, MCFS, NDFS and UDFS and a Python
implementation based on Keras https://keras.io/ was used
for Autoencoder https://github.com/mfbalin/Concrete-
Autoencoders. To address the underlying compositional
structure of “Koren” with these methods, standard pre-
processing steps, i.e., total sum scaling normalization (TSS)
and centered log ratio transformation (CLR), were applied
before selecting the relevant features. No pre-processing was
performed for the other two datasets.

To evaluate the different methods, the following steps were
used:

1. each method was run to select d features with increasing
values of d∈{10,20, ...,290,300}, except for UKFS for
which d is given by the number of selected features
when increasing the regularization parameter, λ. The
solutions for different values of λ were obtained using
a warm restart strategy: the first solution was computed
for a small λ and subsequent solutions were obtained
using the previously obtained solution as an initial value
for the method. 30 values of λ were used, with an
exponential increase. Whereas this strategy shrinks the

obtained solution around the values found for the initial
λ, it has the advantage of providing a consistent and
approximately smooth evaluation of the evolution of the
quality criterion;

2. based on the selected features, the kernel k-means
algorithm was repeated 20 times, using the Gaussian
kernel for “Carcinom” and “Glioma” and the Bray-
Curtis dissimilarity for “Koren”. Data were clustered
into C classes, in which C was chosen as the true value
of the underlying clustering (C=11 for “Carcinom”,
C=4 for “Glioma” and C=3 for “Koren”);

3. the relevance of the obtained feature selection was then
obtained as its ability to recover the true underlying
classification structure of the dataset. This true partition
is used as ground truth to compute standard clustering
performance metrics, i.e., the normalized mutual
information (NMI, (59)) and the overall accuracy
(ACC). More precisely, the average NMI and ACC are
computed over the 20 runs of the k-means algorithm
and the ability of every method to select non redundant
information is also evaluated by computing the average
Kendall correlation between selected features. Kendall
correlation was chosen over Pearson correlation to
account for the fact that input features can have
distributions strongly departing from the Gaussian
and a high skewness. For “Koren”, correlations were
computed using raw counts.
Note that UKFS is not specifically optimized for this
type of problem, contrary to MCFS, NDFS and UDFS,
which explicitly have a cluster structure assumption and
for which C, the a priori number of clusters of the
method, was set to its true value (usually not known in
advance).

Evaluation of the structure based extension of unsupervised
feature selection. The structure based version of the proposed
approach (Equation (12)), was also evaluated in a similar
fashion against alternative methods. Two datasets were
used: the “Koren” dataset described in the previous
section and another dataset included in the R package
mixOmics, called “HMP”. This latter dataset is a Human
Microbiome 16S dataset, including OTU counts on the
three most diverse bodysites: Subgingival plaque (Oral),
Antecubital fossa (Skin) and Stool, sampled from 54 unique
individuals for a total of 162 samples. The 1,674 OTUs
processed and included in mixOmics are a subsample of
the full dataset where OTU counts below 0.01 percent
compared to the total count were filtered out. The original
dataset can be downloaded from the Human Microbiome
Project (http://hmpdacc.org/HMQCP/all/). Relations between
features (OTUs for both cases) were obtained by computing
the Pearson correlation matrix, which was used as the
adjacency matrix of the graph (the method is denoted by
UKFS-G in the sequel).

Evaluation of the kernel output feature selection for multiple
output regression problems. To evaluate the accuracy of
KOKFS, it was first used to solve multiple output regression
problems, i.e., cases where Y=Rq . This setting indeed
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provides an easy way to evaluate the method performance:
more precisely, KOKFS was run with Gaussian input and
output kernels and selected features were evaluated by
assessment of their predictive power (this can be performed
with any regression method). Note that contrary to standard
multivariate linear regression incorporating feature selection
(like multivariate lasso implemented in the R package glmnet
(26)), the proposed approach can 1/ use a more adapted norm
than the Euclidean norm for large dimensional input spaces
and adapts the feature selection to this norm and 2/ does not
directly aim at predicting Y but rather at selecting features
that best explain the global resemblance between samples as
described by the kernel Ky .

The considered datasets were:

1. The “Nutrimouse” dataset (60), available in the R
package mixOmics (28). This dataset contains the
expressions of p=120 genes (obtained by RT-qPCR)
and the concentration of q=21 hepatic fatty acids for
n=40 mice.

2. The “Diogenes” dataset, described in (61, 62) and
available on GEO Gene Expression Omnibus (GEO
repository, http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE95640. This dataset contains
gene expression acquired by RNA-Seq on human
adipose tissue at two different time steps (CID1 and
CID2) of a dietary intervention (before and after
a 8 week low calorie diet) for n=167 individuals.
The expression of p=q=269 genes, respectively
corresponding to expressions before and after the
diet, were used in the experiments. These genes were
genes of interest for the biologists and corresponded
to genes listed in a parallel study on the same
individuals (available on GEO under the accession
number GPL19141). Prior analysis, gene expressions
were log-transformed.

3. The “TCGA” dataset based upon data generated by
The Cancer Genome Atlas (TGCA) Research Network
(https://www.cancer.gov/tcga). The subset is restricted
to primary tumor samples of breast cancer for which
mRNA and miRNA expressions were both available.
Expression data were log-transformed and corrected for
a batch effect (plate) prior analysis. The dataset was
composed of n=1194 individuals for which p=655
miRNA and q=9884 mRNA were available.

Then, experiments were conducted in two steps: a first step for
feature selection and a second one for performance assessment
with nonparametric regressions based on the selected features.

For the feature selection step, Gaussian kernels were
used for the input and output kernels. The parameters of
both Gaussian kernels were set to n(n−1)∑

i6=i′ ‖zi−zi′‖22
, where z

stands for either x or y. The hyper-parameters, λ1 and λ2,
as described in Equation (6), were set as follows: for λ2=0
(no feature selection), λ1 (that controls the complexity of the
function h) was first tuned by 5-fold cross-validation based on
averaged mean squared error minimization. The selected value
was then used for all values of λ2. λ2 (that controls the sparsity
of the weights and thus performs feature selection) was varied

using a warm restart strategy in order to obtain the solutions
for increasing values of λ2. The solution obtained for a small
value of λ2 was first computed and then the algorithm was run
for the next λ2 value using the solution previously obtained
as the starting point for w. A line search procedure was used
for setting a value for the step size that ensured a decrease of
the objective at each iteration. Features were ordered by their
order of appearance in the selection along the λ2 paths.

For the regression step, the features selected by KOKFS
were then passed to a SVM regression to predict each of the q
output features in Y . More precisely, for a number of selected
features between 1 and 40 (ordered by the regularization
path), regressions were performed by ε-regression SVM with
Gaussian kernel and hyperparameters were tuned by cross-
validation as implemented in the R package e1071. For each
output variable, pseudo-R2 was computed as:

pseudo−R2(yj)=1−
∑n
i=1(yij− ŷij)2

Var(yj)
(13)

in which yj stands for the jth variable and ŷij is the value
predicted by the SVM from the selected features for the ith
sample and the jth output variable.

Since q=9,884 for “TCGA”, this regression step was
restricted to q′=50 variables only. To do so, a hierarchical
clustering was performed, with Ward’s linkage based on a
distance obtained from the correlation between genes. The
dendrogram resulting from the hierarchical clustering was cut
at 50 clusters and, in each cluster, a single output variable was
selected, which was the most correlated in average with the
other variables from its cluster.

The overall approach was compared to predictions made by
several alternatives:

• the multivariate Gaussian lasso method implemented in
the R package glmnet (26), in which a group lasso
penalty is used to select features common to all linear
models fitted during the learning. The multivariate
Gaussian lasso method was used in two different
ways: either the direct predictions of the multivariate
Gaussian lasso were used to compute a pseudo-R2 as
in Equation (13) or the selected features were submitted
to the same procedure than the features selected by
KOKFS (i.e., SVM regression for each output variable,
followed by pseudo-R2 computation);

• the multiple output regression Relief, as described in
(32) and available through their Java program CLUS
http://source.ijs.si/ktclus/clus-public/;

• the multiple output random forest (RF), also described
in (32) and available through their Java program CLUS
http://source.ijs.si/ktclus/clus-public/;

• the standard and block version of HSIC lasso (34,
39), available in the pyHSIClasso Python package
https://github.com/riken-aip/pyHSIClasso.

The three last methods were used in replacement to KOKFS
in the feature selection step described above and subjected to
the same type of regression step as the features selected by
KOKFS. The number of features included in the prediction
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was varied from 1 to 40 by order of appearance along the
regularization path (multivariate lasso, HSIC lasso) or by
ranking of the features (Relief, RF).

In addition, for “Nutrimouse”, the selected features were
also compared to the set of features extracted by CCA in the
seminal work (29), by submitting them to SVM regression.

Finally, running times for every method were also obtained
using a single core of the same computer. The provided
running times were the ones needed to select 40 variables or,
as Relief and RF are ranking methods, the running time for
ranking all the variables. For multivariate lasso, the running
time was measured for computing the regularization path for
100 values of λ (with default regularization path provided in
the R package glmnet. Finally, to account for the need to
tune the hyperparameter λ2 in the running time of KOKFS,
the space of λ2 was explored in order to select the value for
which 40 variables are selected. KOKFS was first run for λ2
in the grid val λ2={10−3,10−2,10−1,1,10}. If the number
of selected variables gets below 40 at the tth value of the grid,
the algorithm was stopped and a new grid of 5 log spaced
values was considered between val λ2[t−1] and val λ2[t].
This process was iterated until a value of λ2 was found for
which 40 variables are selected. Running times were averaged
over 10 repetitions of the methods.

Evaluation of kernel output feature selection with time series
outputs. To evaluate the accuracy of KOKFS on outputs
beyond the case of multiple numeric outputs, an example with
time series outputs was used. For such outputs, the Euclidean
distance is meaningless because it doesn’t account for the
natural order of the numeric values in the series, which is
directly induced from the times of measurements. Solutions
to overcome these limitations include the use of dedicated
mixed models (as for the extension of random forest in (63))
or the computation of a relevant similarity measure between
time series. For instance, Fréchet distances (64) can provide
informative insights on the resemblance and are increasingly
used for the analysis of various type of non Euclidean data
(65).

To illustrate the usefulness of the proposed approach
when the resemblance between outputs is well embedded
into Fréchet distance, the data on the impact of various
interventions on Covid-19 epidemic was used. These data
have previously been collected in (66) and are available in
their github repository https://github.com/complexity-science-
hub/ranking npis. More precisely, their L2 version of non-
pharmaceutical interventions (NPI) data was used, which
consisted in the encoding of governmental interventions to
face the Covid-19 pandemic into 46 themes for 79 countries
during 261 days ranging from March to July 2020. Input
features X consisted of the activation of these various
interventions (encoded as 0/1 to indicate if this intervention
was activated or not) in every country at different days. The
Gaussian kernel was used for computing a similarity between
input features.

To avoid redundancy in the dataset, only one day for
each month was selected (the last day of the month). The
corresponding output data, Y , consisted of the evolution of the
reproduction number at date t,Rt, and during the 20 days after
the observation date, Rt+1, ..., Rt+20. The Fréchet distances
between time series were obtained and log-transformed to

Figure 2. Comparison of the different approaches on “Carcinom” in terms
of ACC (left) and NMI (right) versus the number of selected features, d,
computed from kernel k-means results using only the selected features.

improve their discriminating power. An associated similarity
matrix was obtained by subtracting the Fréchet distance values
to their maximum. This matrix was used as the output kernel.
Removing all couples of (country, date) that had at least one
missing value, the final dataset consisted of n=365 different
observations for p=46 governmental interventions.

As in the previous section, λ2 was varied using a warm
restart strategy. Given the shape of the λ2 regularization path
(see Figure S1 of supplementary material), features were
ranked by their maximum associated weight along the path,
which was fairly similar to (but more discriminating than)
their order of appearance in the selection. No ground truth is
available for this problem so the ranking obtained by (66) was
used and a Spearman correlation test was performed to assess
if the two rankings were significantly related.

RESULTS

This section provides results obtained for the simulation
setting described in the previous section. First, results obtained
for the unsupervised framework are given with several
benchmark datasets for the basic version and with two
additional datasets for the structure based version. Then,
results obtained for the kernel output framework are given,
with several multiple output regression problems and then
with time series output. Discussion on the obtained results is
provided in the next section.

Benchmark datasets for the evaluation of unsupervised
feature selection.
Table 2 presents the results obtained for UKFS and its
competitors on the 3 benchmark datasets, in terms of ACC
and NMI for d∈{10,300}, of average CPU time for one run
over the range of d and of the average area under the curve
(AUC) of NMI, ACC and COR over the range of d. CPU time
for Autoencoder for “Carcinom” is not given with the same
exactness than for the other methods because this method was
run in parallel contrary to the others. In addition, Figure 2
provides a comparison of the different approaches in terms of
NMI and ACC evolution on “Carcinom” versus the number of
selected features, d.

Results demonstrate a high efficiency of the proposed
approach to select relevant features with no a priori on the
number of clusters present in the data. For the three tested
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Table 2. Comparison of the different approaches in terms of CPU times in seconds, ACC and NMI computed from kernel k-means results based on the first 10
or 300 selected features (average over 20 clustering results and standard deviations between parenthesis). COR and average AUC of ACC, NMI and COR over
the full range of tested d are also reported.

lapl SPEC MCFS NDFS UDFS Autoencoder UKFS

“Carcinom” (n=174, p=9,182)
ACC (10) 0.36 (0.03) 0.23 (0.17) 0.02 (0.07) 0.22 (0.28) 0.27 (0.07) 0.41 (0.21) 0.55 (0.04)
NMI (10) 0.36 (0.02) 0.23 (0.17) 0.02 (0.07) 0.22 (0.28) 0.26 (0.06) 0.40 (0.21) 0.57 (0.03)

ACC (300) 0.60 (0.05) 0.43 (0.11) 0.70 (0.05) 0.74 (0.06) 0.53 (0.05) 0.57 (0.06) 0.72 (0.07)
NMI (300) 0.64 (0.04) 0.42 (0.10) 0.74 (0.04) 0.78 (0.03) 0.57 (0.03) 0.57 (0.05) 0.75 (0.05)
ACC AUC 164.02 (3.14) 106.52 (6.99) 184.17 (7.23) 200.88 (7.78) 138.48 (4.13) 143.13 (4.30) 206.55 (5.62)
NMI AUC 172.50 (3.00) 103.66 (6.75) 189.96 (6.96) 212.46 (7.78) 148.78 (3.72) 145.09 (4.72) 218.96 (3.82)
COR AUC 28.14 30.75 29.56 27.49 30.30 33.18 24.75
CPU time 0.25 (0.04) 2.47 (0.39) 11.69 (5.21) 6,162 (305) 99,138 (2,913) >4 days 326 (52)

“Glioma” (n=50, p=4,434)
ACC (10) 0.66 (0.04) 0.41 (0.01) 0.60 (0.01) 0.46 (0.04) 0.47 (0.03) 0.53 (0.04) 0.53 (0.06)
NMI (10) 0.50 (0.03) 0.16 (0.01) 0.49 (0.01) 0.20 (0.04) 0.17 (0.02) 0.34 (0.04) 0.26 (0.05)

ACC (300) 0.58 (0.07) 0.49 (0.03) 0.64 (0.04) 0.52 (0.04) 0.52 (0.06) 0.58 (0.06) 0.57 (0.07)
NMI (300) 0.47 (0.06) 0.24 (0.03) 0.52 (0.02) 0.36 (0.07) 0.27 (0.06) 0.35 (0.05) 0.42 (0.05)
ACC AUC 166.31 (2.43) 140.72 (1.13) 172.78 (2.37) 147.77 (2.32) 147.50 (3.14) 132.76 (3.81) 178.57 (9.43)
NMI AUC 134.79 (2.55) 68.32 (1.13) 145.89 (1.39) 93.72 (3.83) 70.60 (2.45) 71.81 (2.63) 127.09 (9.68)
COR AUC 81.70 70.70 76.43 68.02 72.33 45.96 52.14
CPU time 0.02 (0.00) 0.63 (0.02) 1.05 (0.01) 368 (21) 2,636 (93) 42 162.29 (8 721.86) 23.74 (4.03)

“Koren” (n=43, p=980)
ACC (10) 0.48 (0.09) 0.68 (0.05) 0.82 (0.10) 0.80 (0.08) 0.94 (0.09) 0.58 (0.06) 0.84 (0.17)
NMI (10) 0.13 (0.12) 0.39 (0.06) 0.62 (0.12) 0.61 (0.11) 0.90 (0.11) 0.33 (0.08) 0.71 (0.10)

ACC (300) 0.74 (0.18) 0.80 (0.13) 0.77 (0.16) 0.87 (0.18) 0.87 (0.15) 0.86 (0.17) 0.89 (0.02)
NMI (300) 0.53 (0.27) 0.61 (0.19) 0.66 (0.17) 0.78 (0.21) 0.76 (0.22) 0.78 (0.21) 0.80 (0.05)
ACC AUC 172.90 (5.65) 225.25 (6.64) 233.94 (6.71) 263.04 (4.40) 263.48 (5.61) 239.76 (8.96) 242.39 (8.71)
NMI AUC 88.29 (8.40) 163.35 (9.46) 186.58 (7.32) 236.38 (6.87) 234.37 (6.38) 207.48 (11.43) 216.29 (12.18)
COR AUC 48.18 52.34 49.94 48.48 48.69 32.60 47.77
CPU time 0.01 (0.00) 0.07 (0.01) 1.11 (0.12) 5.88 (0.26) 9.70 (0.36) 1 650.46 (224.47) 10.69 (0.03)

datasets, UKFS is in the range of or surpasses results obtained
with other methods. More precisely, Table 2 shows that
UKFS, MCFS and UDFS respectively obtain the best results
on “Carcinom”, “Glioma” and “Koren” datasets. On the
contrary, both score based methods exhibit poor performances,
except on the “Glioma” dataset for which lapl ranks first
when the clustering uses only 10 selected features. Figure 2
confirms these results and shows that UKFS selects features
allowing to produce clustering with a quality fairly similar to
those obtained by two methods designed for such purpose, i.e.,
NDFS and MCFS. This is especially true for the situation
in which a very small number of features are selected (with
less than 50 selected features, UKFS obtains performances
comparable to the best method with more than 100 selected
features).

From the point of view of the redundancy of selected
features, UKFS takes advantage of the joint selection of
features to exhibit a correlation between selected features
which is smaller, in average, than the one obtained by all the
other methods.

Finally, Figure 3 shows the impact of an incorrect setting of
the a priori number of clusters for methods that requires this
information (the example is given for the “Carcinom” dataset
with MCFS). The performances of this method are negatively
impacted for an over-estimation of C (30 instead of 11) and
strongly negatively impacted for an under-estimation of C (2
instead of 11).

Figure 3. Influence of the MCFS settings on its performances for
“Carcinom”. Presented results correspond to different numbers of clusters
C∈{2,11,30} (the true number of clusters is C=11).

Structure based extension of unsupervised feature
selection.
Figure 4 provides the results of the comparison of UKFS and
UKFS-G (structure based version of UKFS) on “Koren” and
Figure 5 and Table 3 the results of the comparison of UKFS
and UKFS-G with all the other methods on “HMP”.

On “Koren”, using the graph only gives a very slight
improvement compared to the original method (average ACC
AUC equal to 267.96 (8.03) compared to 242 (8.71) without
the constraint, which makes it the best method in terms
of ACC AUC compared to results reported in Table 2 on
“Koren”). For “HMP”, the improvement is more important and
allows UKFS-G to compete with the best approach on this
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Figure 4. Comparison of UKFS and UKFS-G on the “Koren” dataset. ACC
(left) and NMI (right) as obtained from kernel k-means using the selected
features.

Figure 5. Comparison of UKFS-G with all alternative methods on the
“HMP” dataset. ACC (left) and NMI (right) as obtained from kernel k-means
using the selected features.

dataset (NDFS that uses the true number of clusters, C=3,
which is a strong advantage for this dataset). Overall, not only
do these results show that adding the structure constraint does
not alter the performance of UKFS but, in some cases, it can
improve it.

Evaluation of kernel output feature selection for multiple
output regression.
Figure 6 provides the evolution of the average pseudo-R2

(over the q outputs) for the different feature selection methods,
when the number of selected features, d, used in the regression
increases from 4 to 40. Note that it was not possible to obtain
feature selection for multivariate lasso and RF for “TCGA”

due to the large size of the dataset. On the contrary, block
HSIC lasso selection was not computed for “Nutrimouse”
since the dataset was very small (and the approach is thus not
relevant in this case, compared to standard HSIC).

All figures show the same tendencies: KOKFS selects
features that, combined with SVM prediction, outperform the
prediction performance of features selected with multivariate
lasso, with HSIC lasso, with RF or with regularized CCA.
The comparison with Relief is less clear but Relief has
strongly varying performances, from being the best method
for “Diogenes” to being the worst for “TCGA”.

In addition, Figure 7 provides information about
redundancy between selected features by displaying their
average absolute value of Pearson correlation versus the
number of selected features, d. For the three benchmarks,
KOKFS is the method that extract the less redundant features
(smallest average correlation), only comparable with Relief
for “Diogenes” and “TCGA” and with RF for “Nutrimouse”.
However, Relief exhibited poor performance on “TCGA” and
RF also exhibited poor performance on “Nutrimouse”.

Finally, Averaged running times of each method is provided
in Table 4. The fastest methods are Relief, HSIC lasso and
block HSIC lasso, with a clear advantage to block HSIC lasso
when both the (input and output) dimension and the sample
size are large. KOKFS is the slowest method on the smallest
dataset (“Nutrimouse”) but scales better for larger (input
and output) dimensions (“Diogenes”) and larger sample size
(“TCGA”) than the other two methods (RF and multivariate
lasso). Note that, for these two methods, it was not possible to
compute the solution for “TCGA” due to overloaded memory
and that RF also overloaded the CPU for all simulations (so
the reported running times are not really comparable with that
of the other methods).

Evaluation of kernel output feature selection with time
series outputs.
Table 5 provides the ranking of the government measures as
provided by the feature selection approach KOKFS to explain
the similarity between (Rt)t time series evolution during the
20 following days. Even though, contrary to (66), the purpose
was not to directly find the government measures the most
effective for reducing the reproduction number (Rt)t but
merely to find the measures that most explain similarity in the
reproduction number evolution, the found conclusions were
very similar to the ones of (66): among important measures,
border health check, individual movement restrictions, the

Table 3. “HMP”. Comparison of the different approaches in terms of ACC and NMI computed from kernel k-means results based on the first 10 or 300 selected
features (average over 20 clustering results and standard deviations between parenthesis). Average AUC of ACC and NMI over the full range of tested d are also
reported.

“HMP” (n=162, p=1,674)

lapl SPEC MCFS NDFS UDFS Autoencoder UKFS UKFS-G

ACC (10) 0.39 (0.03) 0.38 (0.03) 0.94 (0.01) 0.93 (0.09) 0.41 (0.04) 0.57 (0.1) 0.85 (0.07) 0.94 (0.02)

NMI (10) 0.03 (0.02) 0.02 (0.01) 0.79 (0.01) 0.84 (0.05) 0.06 (0.03) 0.41 (0.06) 0.54 (0.13) 0.78 (0.11)

ACC (300) 0.46 (0.05) 0.53 (0.16) 0.37 (0.03) 0.94 (0.08) 0.41 (0.05) 0.98 (0.01) 0.77 (0.10) 0.84 (0.13)

NMI (300) 0.08 (0.04) 0.32 (0.20) 0.03 (0.03) 0.85 (0.05) 0.04 (0.03) 0.93 (0.01) 0.64 (0.09) 0.72 (0.06)

ACC AUC 127.89 (2.68) 199.39 (8.18) 116.06 (2.39) 273.95 (4.40) 116.58 (2.64) 267.12 (5.80) 213.37 (11.58) 231.72 (6.00)

NMI AUC 25.52 (2.40) 148.06 (8.61) 14.47 (2.15) 247.92 (3.28) 13.84 (1.46) 245.76 (3.80) 160.62 (16.24) 192.78 (7.12)
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“Nutrimouse”

“Diogenes” “TCGA”

Figure 6. Prediction performances (in terms of average pseudo-R2 obtained with SVM regression) over all q output variables for the three benchmark datasets
versus the number of features included in the regression, d (along the regularization path for the sparse penalty or along the feature ranking, depending on the
method). Direct prediction performances with the multivariate lasso are also given when possible. For “Nutrimouse”, the red dot corresponds to the features
selected by regularized CCA.

“Nutrimouse”

“Diogenes” “TCGA”

Figure 7. Average (absolute value of) Pearson correlation between selected features for the three benchmark datasets versus the number of features included in
the regression, d (along the regularization path for the sparse penalty or along the feature ranking, depending on the method).

increase of availability of Ppe and the fact that government
provided support to vulnerable persons were found by both
approaches. Similarly, surveillance, the increase of isolation
and quarantine facilities and providing international help were
also found weakly influential measures by both approaches.
The Spearman correlation test also confirmed the significant

similarity between the two rankings (ρ=0.405; p-value =
0.0082).
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Table 4. Averaged running time (in seconds) for selecting 40 variables (10
repetitions). The ? indicates that, unlike other methods that used a single CPU
while running, RF overloaded the CPU with a 400% CPU usage so its running
time is not fully comparable to the others.

Methods “Nutrimouse” “Diogene” “TCGA”
n=40 n=167 n=1,194
p=120 p=269 p=655

q=21 q=269 q=9,884

KOKFS 43.31 413.95 43,502.20

±2.00 ±3.49 ±35.97
multiv. lasso 3.08 669.85 /

±0.11 ±14.19 /
Relief 0.49 0.80 31.99

±0.06 ±0.03 ±1.01
RF? 3.61 222.43 /

±0.30 ±1.73 /
HSIC 0.13 1.34 234.72

±0.03 ±0.03 ±0.03
block HSIC 0.19 0.97 18.70

±0.01 ±0.02 ±0.15

DISCUSSION

Overall, the quality of the selection performed with the new
method presented in this article is very satisfactory: for the
unsupervised case, UKFS obtains results that are far better
than the simplest and fastest methods based on scoring and
results comparable to methods using an a priori information
on a number of cluster. Note that, in real-life applications,
this information is usually not available and, as shown in
the experiments, performances of such methods are strongly
impeded by an incorrect assumption on this hyperparameter.
Since UKFS does not require such an a priori knowledge, its
use is advantageous is very general situations, where there is
no strong a priori on the dataset structure.

For the kernel output case, the situation is very similar,
with an exception: the very simple Relief method outperforms,
on some datasets, the performance of KOKFS but with a
performance quality that is very varying from one dataset
to the other. A specific feature of KOKFS could explain
both its improved performance compared to HSIC methods
(that are also kernel methods) and the varying performance
of Relief: in Relief, the features are selected independently,
which leads to a strong redundancy when the input dataset
has a large number of features (and this drawback impacts
less Relief when the number of features is small to moderate).
This is the same feature that explains the better performance
of UKFS (and the other multivariate unsupervised methods)
compared to the simplest score based methods (lapl and
SPEC). This explanation is supported by the good tradeoff
between performance and redundancy of features obtained for
both methods and all datasets for the proposed approach and
thus indicates that it is probably best suited when the original
number of features is large and that the correlation structure
between these features is strong.

Also note that comparison between performances might
also be influenced by some decisions made on the method
tuning or evaluation. First, as already discussed before, for
MCFS, NDFS and UDFS, a proper tuning of the number of
clusters might provide a fairer comparison of the performance
of these three methods with others. However, in unsupervised

Table 5. Ranking of the government measures as provided by the feature
selection approach KOKFS to explain the similarity between (Rt)t time
series evolution during the 20 following days (from the most important to
the least important). The number in the right column corresponds to the
maximum weight for feature j during the learning: maxk=1,...,Kw

(T )
j (k),

where w(T )
j (k) is the weight for feature j at the last iteration when using the

kth value of the λ2 grid.

Increase In Medical Supplies And Equipment 1.57
Border Health Check 1.36
Public Transport Restriction 1.29
The Government Provides Assistance To
Vulnerable Populations

1.29

Individual Movement Restrictions 1.23
Increase Availability Of Ppe 1.21
Activate Case Notification 1.18
Border Restriction 1.18
Measures To Ensure Security Of Supply 1.17
Port And Ship Restriction 1.13
Activate Or Establish Emergency Response 1.13
National Lockdown 1.12
Crisis Management Plans 1.12
Cordon Sanitaire 1.12
Airport Restriction 1.12
Airport Health Check 1.11
Mass Gathering Cancellation 1.10
Adapt Procedures For Patient Management 1.10
Enhance Laboratory Testing Capacity 1.10
Receive International Help 1.08
Measures For Special Populations 1.08
Closure Of Educational Institutions 1.07
Quarantine 1.07
Police And Army Interventions 1.06
Small Gathering Cancellation 1.06
Special Measures For Certain Establishments 1.06
Actively Communicate With Healthcare
Professionals

1.05

Travel Alert And Warning 1.04
Enhance Detection System 1.04
Return Operation Of Nationals 1.04
Educate And Actively Communicate With The
Public

1.04

Research 1.04
Work Safety Protocols 1.04
Tracing And Tracking 1.03
Actively Communicate With Managers 1.03
Repurpose Hospitals 1.03
Increase Patient Capacity 1.03
Restricted Testing 1.02
Environmental Cleaning And Disinfection 1.01
Measures For Public Transport 1.01
Isolation Of Cases 1.01
Personal Protective Measures 1.00
Increase Healthcare Workforce 1.00
Provide International Help 1.00
Surveillance 1.00
Increase Isolation And Quarantine Facilities 1.00



i
i

“mariette˙etal˙NARGB2021” — 2022/3/8 — 11:32 — page 15 — #15 i
i

i
i

i
i

Nucleic Acids Research, YYYY, Vol. xx, No. xx 15

setting, it is very difficult to perform, having no ground
truth available for that task. Overall, the tuning of all
hyperparameters (especially, the regularization parameters
of UKFS, KOKFS, HSIC lasso, block HSIC lasso and
multivariate lasso that are indirectly linked to the number of
selected features) is always a bit difficult and this is especially
true for KOKFS that has two hyper-parameters. A simple
heuristic was proposed for the joint tuning of these two hyper-
parameters but this impacts the running time and is a direction
of improvement for the method.

In addition, the fact that the proposed feature selection
method is able to explicitly account for the type of kernel
(Gaussian) that is further used in the non linear prediction
approach (kernel k-means and SVM) might play a role in
the good results of KOKFS. This shows that the method is
especially well adapted to select features used in subsequent
kernel methods, often more adapted to describe relations
between samples than the standard Euclidean norm in Rp
again when p is large.

Finally, an important note has to be made on the running
times. Both UKFS and KOKFS have averaged running times,
much larger than score based methods (unsupervised case,
lapl and SPEC) or than Relief and HSIC approaches (kernel
output case). This is expected because the fastest methods all
deal with features independently. On the opposite, multivariate
methods like ours are able to account for colinearities between
features and to reduce redundancy in selected features,
especially for datasets with very large dimensions, but they do
not scale well. UKFS and KOKFS are particularly sensitive
to large sample size (large n as in “TCGA”), as most kernel
methods. To a lesser extent, they are also impacted by large
dimensions of inputs (large p as in “Carcinom”, “Koren”,
“Diogene” and “TCGA”) because of the need to recompute the
full kernel at each iteration step (contrary to HSIC methods
for instance). As a consequence, the running time is not very
good on small to moderate size datasets (“Nutrimouse” and
“Diogene”).

However, while accounting for the multivariate aspect of
output features, the kernel output method is almost insensitive
to large dimensions of outputs (large q), because the output
kernel is computed only once. It is thus more efficient for
large (input and output) dimensions than multivariate lasso
(“Diogene”) and is the only multivariate method for which
the training was not possible for the large sample size and
large dimension dataset (“TCGA”). Note that the running
time of another multivariate feature selection method, the
Autoencoder, is also very prohibitive (almost 1 hour for
the smallest dataset, which is not realistic for computational
biology data that are usually large). Note that Autoencoder
would scale better if run on GPU (only CPU computations
were performed for the sake of fair comparison) but the
algorithm presented in this work is based on operations
that have already been implemented in GPU for modern
frameworks such as Pytorch. Therefore, it would benefit from
a similar speedup.

Finally, to a lesser extent, the remark on running times
can be said for UDFS: processing the “Carcinom” with this
method required more than a day. In conclusion, both UKFS
and KOKFS thus offer a good trade-off with acceptable
running times, while accounting for colinearities between
features (and for the multivariate aspect of the outputs) but

they should not be used for fast screening purpose on large
datasets.

CONCLUSION

We have proposed a generic approach for feature selection
in kernel methods that proved efficient in various situations,
is able to incorporate prior knowledge and to handle various
non numeric outputs. This approach should be able to greatly
contribute to a better interpretation of omics integration
analysis for which kernel methods are already a gold standard.

However, even if the proposed method is computationally
efficient compared to more demanding approaches, such as
autoencoders, it tends to scale poorly when the number
of samples, n, becomes very large. Future work should
leverage this problem by investigating the use of Nyström
approximation or random Fourier features to speed up the
most demanding parts of the algorithm.
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