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Abstract. The Self-Organizing Map (SOM) is widely used, easy to im-
plement, has nice properties for data mining by providing both clustering
and visual representation. It acts as an extension of the k-means algo-
rithm that preserves as much as possible the topological structure of the
data. However, since its conception, the mathematical study of the SOM
remains di�cult and has be done only in very special cases. In WSOM
2005, Jean-Claude Fort presented the state of the art, the main remain-
ing di�culties and the mathematical tools that can be used to obtain
theoretical results on the SOM outcomes. These tools are mainly Markov
chains, the theory of Ordinary Di�erential Equations, the theory of sta-
bility, etc. This article presents theoretical advances made since then. In
addition, it reviews some of the many SOM algorithm variants which
were de�ned to overcome the theoretical di�culties and/or adapt the
algorithm to the processing of complex data such as time series, missing
values in the data, nominal data, textual data, etc.
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1 Brief history of the SOM

Since its introduction by T. Kohonen in his seminal 1982 articles (Kohonen
[1982a,b]), the self-organizing map (SOM) algorithm has encountered a very
large success. This is due to its very simple de�nition, to the easiness of its
practical development, to its clustering properties as well as its visualization
ability. SOM appears to be a generalization of basic clustering algorithms and
at the same time, provides nice visualization of multidimensional data.

The basic version of SOM is an on-line stochastic process which has been
inspired by neuro-biological learning paradigms. Such paradigms had previously
been used to model some sensory or cognitive processes where the learning is di-
rected by the experience and the external inputs without supervision. For exam-
ple, Ritter and Schulten [1986] illustrate the somatosensory mapping property of
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SOM. However, quickly in the eighties, SOM was not restricted to neuro-biology
modeling and has been used in a huge number of applications (see e.g. Kaski
et al. [1998b], Oja et al. [2003] for surveys), in very diverse �elds as economy,
sociology, text mining, process monitoring, etc.

Since then, several extensions of the algorithms have been proposed. For in-
stance, for users who are not familiar with stochastic processes or for industrial
applications, the variability of the equilibrium state was seen as a drawback
because the learnt map is not always the same from one run to another. To ad-
dress this issue, T. Kohonen introduces the batch SOM, (Kohonen [1995, 1999])
which is deterministic and thus leads 3 to reproducible results (for a given ini-
tialization). Also, the initial SOM (on-line or batch versions) was designed for
real-valued multidimensional data, and it has been necessary to adapt its de�-
nition in order to deal with complex non vectorial data such as categorical data,
abstract data, documents, similarity or dissimilarity indexes, as introduced in
Kohonen [1985], Kaski et al. [1998a], Kohohen and Somervuo [1998]. One can
�nd in Kohonen [1989, 1995, 2001, 2013, 2014] extensive lists of references re-
lated to SOM. At this moment more than 10 000 papers have been published on
SOM or using SOM.

In this paper, we review a large selection of the numerous variants of the
SOM. One of the main focus of this survey is the question of convergence of the
SOM algorithms, viewed as stochastic processes. This departs signi�cantly from
the classical learning theory setting. In this setting, exempli�ed by the pioneer-
ing results of Pollard et al. [1981], one generally assumes given an optimization
problem whose solution is interesting: for instance, an optimal solution of the
quantization problem associated to the k-means quality criterion. The optimiza-
tion problem is studied with two points of view: the true problem which involves
a mathematical expectation with respect to the (unknown) data distribution and
its empirical counterpart where the expectation is approximated by an average
on a �nite sample. Then the question of convergence (or consistency) is whether
the solution obtained on the �nite sample converges to the true solution that
would be obtained by solving the true problem.

We focus on a quite di�erent problem. A speci�c stochastic algorithm such as
the SOM one de�nes a series of intermediate con�gurations (or solutions). Does
the series converge to something interesting? More precisely, as the algorithm
maps the inputs (the data) to an output (the prototypes and their array), one can
take this output as the result of the learning process and may ask the following
questions, among others:

� How to be sure that the learning is over?
� Do the prototypes extract a pertinent information from the data set?
� Are the results stables?
� Are the prototypes well organized?

In fact, many of these questions are without a complete answer, but in the fol-
lowing, we review parts of the questions for which theoretical results are known
and summarize the main remaining di�culties. Section 2 is devoted to the de�-
nition of SOM for numerical data and to the presentation of the general methods
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used for studying the algorithm. Some theoretical results are described in the
next sections: Section 3 explains the one dimensional case while in Section 4, the
results available for the multidimensional case are presented. The batch SOM is
studied in Section 5. In Section 6, we present the variants proposed by Heskes to
get an energy function associated to the algorithm. Section 7 is dedicated to non
numerical data. Finally, in Section 8, we focus on the use of the stochasticity of
SOM to improve the interpretation of the maps. The article ends with a very
short and provisional conclusion.

2 SOM for numerical data

Originally, (in Kohonen [1982a] and Kohonen [1982b]), the SOM algorithm was
de�ned for vector numerical data which belong to a subset X of an Euclidean
space (typically Rp). Many results in this paper additionally require that the sub-
set is bounded and convex. There are two di�erent settings from the theoretical
point of view:

� continuous setting : the input space X can be modeled by a probability dis-
tribution de�ned by a density function f ;

� discrete setting : the data space X comprises N data points x1, . . . , xN in
Rp (In this paper, by discrete setting, we mean a �nite subset of the input
space).

The theoretical properties are not exactly the same in both cases, so we shall
later have to separate these two settings.

2.1 Classical on-line SOM, continuous or discrete setting

In this section, let us consider that X ⊂ Rp (continuous or discrete setting).
First we specify a regular lattice of K units (generally in a one- or two-

dimensional array). Then on the set K = {1, . . . ,K}, a neighborhood structure
is induced by a neighborhood function h de�ned on K × K. This function can
be time dependent and, in this case, it will be denoted by h(t). Usually, h is
symmetrical and depends only on the distance between units k and l on the
lattice (denoted by dist(k, l) in the following)). It is common to set hkk = 1 and
to have kkl decrease with increasing distance between k and l. A very common
choice is the step function, with value 1 if the distance between k and l is less
than a speci�c radius (this radius can decrease with time), and 0 otherwise.
Another very classical choice is

hkl(t) = exp

(
−dist

2(k, l)

2σ2(t)

)
,

where σ2(t) can decrease over time to reduce the intensity and the scope of the
neighborhood relations.

A prototype mk ∈ Rp is attached to each unit k of the lattice. Prototypes
are also called models, weight vectors, code-vectors, codebook vectors, centroids,
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etc. The goal of the SOM algorithm is to update these prototypes according to
the presentation of the inputs in such a way that they represent the input space
as accurately as possible (in a quantization point of view) while preserving the
topology of the data by matching the regular lattice with the data structure.
For each prototype mk, the set of inputs closer to mk than to any other one
de�nes a cluster (also called a Voronoï cell) in the input space, denoted by Ck,
and the neighborhood structure on the lattice induces a neighborhood structure
on the clusters. In other words, after running the SOM process, close inputs
should belong to the same cluster (as in any clustering algorithm) or to neighbor
clusters.

From any initial values of the prototypes, (m1(0), . . . ,mK(0)), the SOM al-
gorithm iterates the following steps:

1. At time t, if m(t) = (m1(t), . . . ,mK(t)) denotes the current state of the pro-
totypes, a data point x is drawn according to the density f in X (continuous
setting) or at random in the �nite set X (discrete setting).

2. Then ct(x) ∈ {1, . . . ,K} is determined as the index of the best matching
unit, that is

ct(x) = arg min
k∈{1,...,K}

‖x−mk(t)‖2, (1)

3. Finally, all prototypes are updated via

mk(t+ 1) = mk(t) + ε(t)hkct(x)(t)(x−mk(t)), (2)

where ε(t) is a learning rate (positive, less than 1, constant or decreasing).

Although this algorithm is very easy to de�ne and to use, its main theoret-
ical properties remain without complete proofs. Only some partial results are
available, despite a large amount of works and empirical evidences. More pre-
cisely, (mk(t))k=1,...,K are K stochastic processes in Rp and when the number t
of iterations of the algorithm grows,mk(t) could have di�erent behaviors: oscilla-
tion, explosion to in�nity, convergence in distribution to an equilibrium process,
convergence in distribution or almost sure to a �nite set of points in Rp, etc.

This is the type of convergence that we will discuss in the sequel. In particular,
the following questions will be addressed:

� Is the algorithm convergent in distribution or almost surely, when t tends to
+∞?

� What happens when ε is constant? when it decreases?

� If a limit state exists, is it stable?

� How to characterize the organization?

One can �nd in Cottrell et al. [1998] and Fort [2006] a summary of the main rig-
orous results with most references as well as the open problems without solutions
until now.
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2.2 Mathematical tools related to the convergence of stochastic
processes

The main methods that have been used to analyze the SOM convergence are
summarized below.

� The Markov Chain theory for constant learning rate and neighbor-
ing function, which is useful to study the convergence and the limit
states. If the algorithm converges in distribution, this limit distribution
has to be an invariant measure for the Markov Chain. If it is possible to
prove some strong organization, it has to be associated to an absorbing class;

� The Ordinary Di�erential Equation method (ODE), which is a classical
method to study the stochastic processes.
If we write down the equation (2) for each k ∈ K in a vector form, we get

m(t+ 1) = m(t)− ε(t)Φ(x,m(t)), (3)

where Φ is a stochastic term. To study the behavior of such stochastic pro-
cesses, it is often useful to study the solutions of the associated deterministic
ordinary di�erential equation that describes the mean behavior of the pro-
cess. This ODE is

dm

dt
= −φ(m), (4)

where φ(m) is the expectation of Φ(.,m) with respect to the probability
distribution of the inputs x (continuous setting) or the arithmetic mean
(discrete setting).
Here the kth−component of φ is

φk(m) =

K∑
j=1

hkj

∫
Cj

(x−mk)f(x)dx, (5)

for the continuous setting or

φk(m) =
1

N

K∑
j=1

hkj
∑
xi∈Cj

(xi −mk), (6)

that can be also written

φk(m) =
1

N

N∑
i=1

hkc(xi)(xi −mk), (7)

for the discrete setting.
The possible limit states of the stochastic process in Equation (2) would
have to be solutions of the equation

φ(m) = 0.
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Then if the zeros of this function were the minima of a function (most often
called energy function), it would be useful to apply the gradient descent
methods.

� The Robbins-Monro algorithm theory which is used when the learning rate
decreases under conditions∑

t

ε(t) = +∞ and
∑
t

ε(t)2 < +∞. (8)

Unfortunately some remarks explain why the original SOM algorithm is dif-
�cult to study. Firstly, for dimension p > 1, a problem arises: it is not possible
to de�ne any absorbing class which could be an organized state. Secondly, al-
though the process m(t) can be written down as a classical stochastic process of
Equation (3), one knows since the papers Erwin et al. [1992a,b], that it does not
correspond to an energy function, that is it is not a gradient descent algorithm
in the continuous setting. Finally, it must be emphasized that no demonstration
takes into account the variation of the neighborhood function. All the existing
results are valid for a �xed size and intensity of the function h.

3 The one-dimensional case

A very particular setting is the one-dimensional case: the inputs belong to R
and the lattice is a one-dimensional array (a string). Even though this case is of
a poor practical utility, it is interesting because the theoretical analysis can be
fully conducted.

3.1 The simplest one-dimensional case

The simplest case was fully studied in the article Cottrell and Fort [1987]. The
inputs are supposed to be uniformly distributed in [0, 1], the lattice is a one-
dimensional array {1, 2, . . . ,K}, the learning rate ε is a constant smaller than
1
2 , the neighborhood function is a constant step function hkl = 0 if |k − l| > 1
and 1 otherwise. In that case the process m(t) is a homogeneous Markov Chain
with continuous state space. The organization we look for is simply the ordering
(ascending or descending) and so is easy to characterize. Let us describe the
main steps of the proof.

1. There exists a decreasing functional: the number of badly ordered triplets.
But this is not su�cient to prove the convergence, it has to be strictly de-
creasing with a strictly positive probability.

2. The set of ordered dispositions is an absorbing class, composed of two classes
which do not communicate: the increasing sequences class and the decreasing
sequences class.

3. One shows that ordering (topology preservation in this special case) takes
place after a �nite time with a probability which is greater than a positive
bound, and that the hitting time of the absorbing class is almost surely �nite.
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0

1

j − 1 j j + 1 j − 1 j j + 1 j − 1 j j + 1 j − 1 j j + 1

Fig. 1. Four examples of triplets of prototypes (mj−1,mj ,mj+1). For each j, j−1 and
j + 1 are its neighbors. The y-axis coordinates are the values of the prototypes that
take values in [0, 1]. The �rst two triplets on the left are badly ordered. In the case
under study, SOM will order them with a strictly positive probability. The last two
triplets (on the right) are well ordered and SOM will never disorder them.

4. Then one shows that the Markov Chain has the Doeblin property: there
exists an integer T , and a constant c > 0, such that, given that the process
starts from any ordered state, and for all set E in [0, 1]n, with positive
measure, the probability to enter in E with less than T steps is smaller than
c vol(E).

5. This implies that the chain converges in distribution to a monotonous sta-
tionary distribution which depends on ε (which is a constant in that part).

6. If ε(t) tends towards 0 and satis�es the Robbins-Monro conditions (8), once
the state is ordered, the Markov Chain almost surely converges towards a
constant (monotonous) solution of an explicit linear system.

So in this very simple case, we could prove the convergence to a unique
ordered solution such that

m1(+∞) < m2(+∞) < . . . < mK(+∞),

or
m1(+∞) > m2(+∞) > . . . > mK(+∞).

Unfortunately, it is not possible to �nd absorbing classes when the dimension
is larger than 1. For example, in dimension 2, with 8 neighbors, if the x- and
y-coordinates are ordered, it is possible (with positive probability) to disorder
the prototypes as illustrated in Figure 2.

3.2 What we know about the general one-dimensional case

We summarize in this section the essential results that apply to the general
one dimension case (with constant neighborhood function and in the continuous
setting). References and precise statements can be found in Fort [2006] and
Cottrell et al. [1998]. Compared to the previous section, hypothesis on the data
distribution and/or the neighborhood function are relaxed.
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B

A

C

Fig. 2. This �gure represents 2-dimensional prototypes (x- and y-axes are not shown
but are the standard horizontal and vertical axes) which are linked as their correspond-
ing units on the SOM grid. At this step of the algorithm, the x- and y- coordinates
of the prototypes are well ordered. But contrarily to the one-dimensional case, this
disposition can be disordered with a positive probability; in an 8-neighbors case, A is
C's neighbor, but B is not a neighbor of C. If C is repeatedly the best matching unit,
B is never updated, while A becomes closer and closer to C. Finally, the y coordinate
of A becomes smaller than that of B and the disposition is disordered.

� The process m(t) is almost surely convergent to a unique stable equilibrium
point in a very general case: ε(t) is supposed to satisfy the conditions (8),
there are hypotheses on the density f and on the neighborhood function
h. Even though these hypotheses are not very restrictive, some important
distributions, such as the χ2 or the power distribution, do not ful�ll them.

� For a constant ε, the ordering time is almost surely �nite (and has a �nite
exponential moment).

� With the same hypotheses as before to ensure the existence and uniqueness
of a stable equilibrium x∗, from any ordered state, for each constant ε, there
exists an invariant probability measure πε. When ε tends to 0, this measure
concentrates on the Dirac measure on x∗.

� With the same hypotheses as before to ensure the existence and uniqueness
of a stable equilibrium x∗, from any ordered state, the algorithm converges
to this equilibrium provided that ε(t) satis�es the conditions (8).

As the hypotheses are su�ciently general to be satis�ed in most cases, one
can say that the one-dimensional case is more or less well-known. However noth-
ing is proved neither about the choice of a decreasing function for ε(t) to ensure
simultaneously ordering and convergence, nor for the case of decreasing neigh-
borhood function.

4 Multidimensional case

When the data are p-dimensional, one has to distinguish two cases, the contin-
uous setting and the discrete one.

4.1 Continuous setting

In the p−dimensional case, we have only partial results proved by Sadeghi in
(Sadeghi [2001]). In this paper, the neighborhood function is supposed to have
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a �nite range, the learning rate ε is a constant, the probability density function
is positive on an interval (this excludes the discrete case). Then the algorithm
weakly converges to a unique probability distribution which depends on ε.

Nothing is known about the possible topology preservation properties of this
stationary distribution. This is a consequence of the di�culty of de�ning an
absorbing organized state in a multidimensional setting. For example, two results
of Flanagan and Fort-Pagès illustrate the complexity of the problem. These two
apparently contradictory results hold. For p = 2, let us consider the set F++ of
simultaneously ordered coordinates (respectively x and y coordinates). We then
have:

� for a constant ε and very general hypotheses on the density f , the hitting
time of F++ is �nite with a positive probability (Flanagan [1996]),

� but in the 8-neighbor setting, the exit time is also �nite with positive prob-
ability (Fort and Pagès [1995]).

4.2 Discrete setting

In this setting, the stochastic process m(t) of Equations (2) and (4) derives from
a potential function, which means that it is a gradient descent process associated
to the energy. When the neighborhood function does not depend on time, Ritter
et al. [1992] have proven that the stochastic process m(t) of Equations (2) and
(3) derives from a potential, that is it can be written

mk(t+ 1) = mk(t) + ε(t)hkc(x)(t)(x−mk(t)),

= mk(t)− ε(t)Φk(x,m(t)),

= mk(t)− ε(t)
∂

∂mk
E(x,m(t)),

where E(x,m) is a sample function of E(m) with

E(m) =
1

2N

K∑
k=1

K∑
j=1

hkj
∑
xi∈Cj

‖mk − xi‖2, (9)

or in a shorter expression

E(m) =
1

2N

N∑
i=1

K∑
k=1

hkc(xi)‖mk − xi‖2. (10)

In other words the stochastic process m(t) is a stochastic gradient descent
process associated to function E(m). Three interesting remarks can be made:

1. The energy function is a generalization of the distortion function (or intra
classes variance function) associated to the Simple Competitive Learning
process (SCL, also known as the Vector Quantization Process/Algorithm),
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which is the stochastic version of the deterministic Forgy algorithm. The
SCL process is nothing else than the SOM process where the neighborhood
function is degenerated, ie when hkl = 1 only for k = l and hkl = 0 elsewhere.
In that case, E reduces to

E(m) =
1

2N

N∑
i=1

‖mc(xi) − xi‖
2.

For that reason, E is called extended intra-classes variance.
2. The above result does not ensure the convergence of the process: in fact the

gradient of the energy function is not continuous and the general hypotheses
used to prove the convergence of the stochastic gradient descent processes
are not valid. This comes from the fact that there are discontinuities when
crossing the boundaries of the clusters associated to the prototypes, because
the neighbors involved in the computation change from a side to another.
However this energy gives an interesting insight on the process behavior.

3. In the 0-neighbor setting, the Vector Quantization algorithm converges, since
there is no problem with the neighbors and the gradient is continuous. How-
ever there are a lot of local minima and the algorithm converges to one of
these minima.

5 Deterministic batch SOM

As the possible limit states of the stochastic process (2) would have to be solu-
tions of the ODE equation

φ(m) = 0,

it is natural to search how to directly get these solutions. The de�nition of the
batch SOM algorithm can be found in Kohonen [1995, 1999].

From Equation (5), in the continuous setting, the equilibriumm∗ must satisfy

∀k ∈ K,
K∑
j=1

hkj

∫
Cj

(x−m∗k)f(x)dx.

Hence, for the continuous setting, the solution complies with

m∗k =

∑K
j=1 hkj

∫
Cj
xf(x)dx∑K

j=1 hkj
∫
Cj
f(x)dx

.

In the discrete setting, the analogous is

m∗k =

∑K
j=1 hkj

∑
xi∈Cj

xi∑K
j=1 hkj |Cj |

=

∑N
i=1 hkc(xi)xi∑N
i=1 hkc(xi)

Thus, the limit prototypesm∗k have to be the weighted means of all the inputs
which belong to the cluster Ck or to its neighboring clusters. The weights are
given by the neighborhood function h.
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Using this remark, it is possible to derive the de�nition of the batch algo-
rithm.

mk(t+ 1) =

∑K
j=1 hkj(t)

∫
Cj(mk(t))

xf(x)dx∑K
j=1 hkj(t)

∫
Cj(mk(t))

f(x)dx
. (11)

for the continuous setting, and

mk(t+ 1) =

∑N
i=1 hkct(xi)(t)xi∑N
i=1 hkct(xi)(t)

(12)

for the discrete case.

This algorithm is deterministic, and one of its advantages is that the limit
states of the prototypes depend only on the initial choices. When the neighbor-
hood is reduced to the unit itself, this batch algorithm for the SOM is nothing
else than the classical Forgy algorithm (Forgy [1965]) for clustering. Its theoret-
ical basis is solid and a study of the convergence can be found in Cheng [1997].
One can prove (Fort et al. [2001, 2002]) that it is exactly a quasi-Newtonian
algorithm associated to the extended distortion (energy) E (see Equation (10)),
when the probability to observe a x in the sample which is exactly positioned
on the median hyperplanes (e.g., the boundaries of Ck) is equal to zero. This
assumption is always true in the continuous setting but it is not relevant in the
discrete setting since there is no guarantee that data points never belong to the
boundaries which vary along the iterations.

The batch SOM algorithm is the extension of the Forgy algorithm with the
introduction of the neighborhood between clusters, in the same way as the on-
line SOM algorithm is for the Vector Quantization algorithm. It is not exactly
a gradient descent algorithm, but it converges to a minimum of the energy E.
Obviously there are many local minima. In conclusion, the relations between
these clustering algorithms are summarized in Table 1.

on-line stochastic batch deterministic

No neighbor VQ, SCL, k-means Forgy, moving centers

With neighbors SOM batch SOM

Table 1. Comparison summary.
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6 Other algorithms related to SOM

As explained before, the on-line SOM is not a gradient algorithm in the continu-
ous setting (Erwin et al. [1992a,b]). In the discrete setting, there exists an energy
function, which is an extended intra-classes variance as in Equation (10), but this
function is not continuously di�erentiable. To overcome these problems, Heskes
[1999] proposes to slightly modify the on-line version of the SOM algorithm so it
can be seen as a stochastic gradient descent on the same energy function. To do
so, he introduces a new hard assignment of the winning unit and a soft version
of this assignment.

6.1 Hard assignment in the Heskes's rule

In order to obtain an energy function for the on-line SOM algorithm, Heskes
[1999] modi�es the rule for computing the best matching unit (BMU). In his
setting, Equation (1) becomes

ct(x) = arg min
k∈{1,...,K}

K∑
j=1

hkj(t)‖x−mk(t)‖2 (13)

The energy function considered here is

E(m) =
1

2

K∑
j=1

K∑
k=1

hkj(t)

∫
x∈Cj(m)

‖x−mk(t)‖2f(x)dx, (14)

where Cj(m) is the cluster (Voronoï cell) associated to the j-th prototype. The
regularity properties of the energy function and of its gradient are summarized
in Table 2, as discussed in Heskes [1999].

Discrete setting Continuous setting

Kohonen rule Energy : discontinuous (but �nite on V ) Energy : continuous
for computing BMU Gradient : discontinuous (in�nite on V ) Gradient : discontinuous

Heskes rule Energy : continuous Energy : continuous
for computing BMU Gradient : discontinuous (�nite on V ) Gradient : continuous

Table 2. Smoothness of the energy function
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6.2 Soft Topographic Mapping (STM)

The original SOM algorithm is based on a hard winner assignment. Generaliza-
tions based on soft assignments were derived in Heskes [1999] and Graepel et al.
[1998]. First, let us remark that the energy function in the discrete case can also
be written as

E(m, c) =
1

2

K∑
k=1

N∑
i=1

cik

K∑
j=1

hkj(t)‖mj(t)− xi‖2

where cik is equal to 1 if xi belongs to cluster k and zero otherwise. This crisp
assignment may be smoothed by considering cik ≥ 0 such that

∑K
k=1 cik = 1.

The soft assignments may be viewed as the probabilities of input xi to belong
to class k.

Since the optimization of the energy function with gradient descent-like al-
gorithms would get stuck into local minima, the problem is transformed into a
deterministic annealing scheme. The energy function is smoothed by adding an
entropy term and transforming it into a �free energy� cost function, parameter-
ized by a parameter β :

F (m, c, β) = E(m, c)− 1

β
S(c) ,

where S(c) is the entropy term associated to the full energy. For low values of
β, only one global minimum remains and may be easily determined by gradient
descent or EM schemes. For β → +∞, the free energy has exactly the same
expression as the original energy function.
When using deterministic annealing, one begins by computing the minimum of
the free energy at low values of β and then attempts to compute the minimum
for higher values of β (β may be chosen to grow exponentially), until the global
minimum of the free energy for β → +∞ is equal to the global minimum of the
original energy function.
For a �xed value of β, the minimization of the free energy leads to iterating
over two steps given by Equations (15) and (16), in batch version, and very
similar to the original SOM (the neighborhood function h is not varied during
the optimization process) :

P(xi ∈ Ck) =
exp(−βeik)∑K
j=1 exp(−βeij)

, (15)

where eik = 1
2

∑K
j=1 hjk(t)‖xi −mj(t)‖2 and

mk(t) =

∑N
i=1 xi

∑K
j=1 hjk(t)P(xi ∈ Cj)∑N

i=1

∑K
j=1 hjk(t)P(xi ∈ Cj)

(16)

The updated prototypes are written as weighted averages over the data vec-
tors. For β → +∞, the classical batch SOM is retrieved.
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6.3 Probabilistic views on the SOM

Several attempts have been made in order to recast the SOM algorithm (and
its variants) into a probabilistic framework, namely the general idea of mixture
models (see e.g. McLachlan and Peel [2004]). The central idea of those approaches
is to constrain a mixture of Gaussian distributions in a way that mimic the SOM
grid. Due to the heuristic nature of the SOM, the resulting models depart quite
signi�cantly from the SOM algorithms and/or from standard mixture models.
We describe below three important variants. Other variants are listed in e.g.
Verbeek et al. [2005].

SOM and regularized EM One of the �rst attempt in this direction can be
found in Heskes [2001]. Based on his work on energy functions for the SOM, Hes-
kes shows in this paper that the batch SOM can be seen as a form of regularized
Expectation Maximization (EM) algorithm1.

As mentioned above, the starting point of the this analysis consists in in-
troducing an isotropic Gaussian mixture with K components. The multivariate
Gaussian distributions share a single precision parameter β, with the covariance
matrix 1

β I, and are centered on the prototypes.
However, up to some constant terms, the opposite of the log likelihood of such

a mixture corresponds to the k-means quantization error. And therefore, maxi-
mizing the likelihood does not provide any topology preservation. Thus Heskes
introduces a regularization term which penalizes prototypes that do not respect
the prior structure (the term does not depend directly on the data points), see
Heskes [2001] for details. Then Heskes shows that applying the EM principle to
the obtained regularized (log)likelihood leads to an algorithm that resembles the
batch SOM one.

This interpretation has very interesting consequences, explored in the paper.
It is easy for instance to leverage the probabilistic framework to handle missing
values in a principled (non heuristic) way. It is also easy to use other mixtures e.g.
for non numerical data (such as count data). However, the regularization itself
is rather ad hoc (it cannot be easily interpreted as a prior distribution on the
parameters, for instance). In addition, the �nal algorithm is signi�cantly di�erent
from the batch SOM. Indeed, as in the case of the STM, crisp assignments are
replaced by probabilistic ones (the crispness of the assignments is controlled by
the precision parameter β). In addition, as in STM, the neighborhood function
is �xed (as it is the core of the regularization term). To our knowledge, the
practical consequences of those di�erences have not been studied in detail on
real world data. While one can argue that β can be increased progressively and
at the same time, one can modify the neighborhood function during the EM
algorithm, this might also have consequences that remain untested.

SOM and variational EM Another take at this probabilistic interpretation
can be found in Verbeek et al. [2005]. As in Heskes [2001] the �rst step consists

1 EM is the standard algorithm for mixture models.
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in assuming a standard mixture model (e.g. a K components Gaussian isotropic
mixture for multivariate data). Then the paper leverages the variational principle
(see e.g. Jordan et al. [1999]).

In summary, the variational principle is based on introducing an arbitrary
distribution q on the latent (hidden) variables Z of the problem under study.
In a standard mixture model, the hidden variables are the assignment ones,
which map each data point to a component of the mixture (a cluster in the
standard clustering language). One can show that the integrated log likelihood
of a mixture model with Θ as parameters, log p(X|Θ), is equal to the sum of
three components: the complete likelihood (knowing both the data points X and
the hidden variables Z) integrated over the hidden variables with respect to q,
Eq log p(X,Z|Θ), the entropy of q, H(q), and the Kullback-Leibler divergence,
KL(q|p(Z|X,Θ)), between q and the posterior distribution of the hidden vari-
ables knowing the data points p(Z|X,Θ). This equality allows one to derive the
EM algorithm when the posterior distribution of the hidden variables knowing
the data points can be calculated exactly. The variational approach consists in
replacing this distribution by a simpler one when it cannot be calculated.

In standard mixture models (such as the multivariate Gaussian mixture),
the variational approach is not useful as the posterior distribution of the hidden
variables can be calculated. However Verbeek et al. [2005] propose nevertheless to
use the variational approach as a way to enforce regularity in the mixture model.
Rather than allowing p(Z|X,Θ) to take an arbitrary form, they constrain it to a
subset of probability distributions on the hidden variables that ful�ll topological
constraint corresponding to the prior structure of the SOM. See Verbeek et al.
[2005] for details.

This solution shares most of the advantages of the older proposal in Heskes
[2001], with the added value of being based on a more general principle that can
be applied to any mixture model (in practice, Heskes [2001] makes sense only
for the exponential family). In addition, Verbeek et al. [2005] study the e�ects
of shrinking the neighborhood function during training and conclude that it
improves the quality of the solutions. Notice that, in Verbeek et al. [2005], the
shared precision of the Gaussian distributions (β) is not a meta-parameter as in
Heskes [2001] but a regular parameter that is learned from the data.

The Generative Topographic Mapping The Generative Topographic Map-
ping (GTM, Bishop et al. [1998]) is frequently presented as a probabilistic version
of the SOM. It is rather a mixture model inspired by the SOM rather than an
adaptation. Indeed the aim of the GTM designers was not to recover a learning
algorithm close to a SOM variant, but rather to introduce a mixture model that
enforce topology preservation.

The GTM is based on uniform prior distribution on a �xed grid which is
mapped via an explicit smooth nonlinear mapping to the data space (with some
added isotropic Gaussian noise). It can be seen as a constrained Gaussian mix-
ture, but with yet another point of view compared to Heskes [2001] and Verbeek
et al. [2005]. In Heskes [2001], the constraint is enforced by a regularization term
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on the data space distribution while in Verbeek et al. [2005] the constraint is
induced at the latent variable level (via approximating p(Z|X,Θ) by a smooth
distribution). In the GTM the constraint is induced on the data space distribu-
tion because it is computed via a smooth mapping. In other words, the centers of
the Gaussian distributions are not freely chosen but rather obtained by mapping
a �xed grid to the data space via the nonlinear mapping.

The nonlinear mapping is in principle arbitrary and can therefore implement
various type of regularity (i.e. topology constraints). The use of Gaussian ker-
nels lead to constraints that are quite similar to the SOM constraints. Notice
that those Gaussian kernels are not to be confused with the isotropic Gaussian
distributions used in the data space (the same confusion could arise in Verbeek
et al. [2005] where Gaussian kernels can be used to specify the constraints on
p(Z|X,Θ)).

Once the model has been specify (by choosing the nonlinear mapping), its
parameters are estimated via an EM algorithm. The obtained algorithm is quite
di�erent from the SOM (see Heskes [2001] for details), at least in its natural
formulation. However the detailed analysis contained in Heskes [2001] shows
that the GTM can be reformulated in a way that is close to the batch SOM with
probabilistic assignments (as in e.g. the STM). Once again, however, this is not
exactly the same algorithm. In practice, the results on real world data can be
quite di�erent. Also, as all the probabilistic variants discussed in this section,
the GTM bene�ts from the probabilistic setting that enables principled missing
data analysis as well as easy extensions to the exponential family of distributions
in order to deal with non numerical data.

7 Non numerical data

When the data are not numerical, the SOM algorithm has to be adapted. See
for example Kohonen [1985], Kohonen [1996], Kaski et al. [1998a], Kohohen
and Somervuo [1998], Kohonen [2001], Kohonen and Somervuo [2002], Kohonen
[2013], Kohonen [2014], Cottrell et al. [2012], where some of these adaptations
are presented. Here we deal with categorical data collected in surveys and with
abstract data which are known only by a dissimilarity matrix or a kernel matrix.

7.1 Contingency table or complete disjunctive table

Surveys collect answers of the surveyed individuals who have to choose an answer
to several questions among a �nite set of possible answers. The data can consist
in

� a simple contingency table, where there are only two questions, and where the
entries are the numbers of individuals who choose a given pair of categories,

� a Burt table, that is a full contingency table between all the pairs of cate-
gories of all the questions,
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� a complete disjunctive table that contains the answers of all the individuals,
coded in 0/1 against dummy variables which represent all the categories of
all the questions.

In all these settings, the data consist in a positive integer-valued matrix,
which can be seen as a large �contingency table�. In classical data analysis, one
uses Multiple Correspondence Analysis (MCA) that are designed to deal with
these tables. MCA is nothing else than two simultaneous weighted Principal
Component Analysis (PCA) of the table and of its transposed, using the χ2

distance instead of the Euclidean distance. To use a SOM algorithm with such
tables, it is therefore su�cient to apply a transformation to the data, in order to
take into account the χ2 distance and the weighting, in the same way that it is
de�ned to use Multiple Correspondence Analysis. After transforming the data,
two coupled SOM using the rows and the columns of the transformed table can
thus be trained. In the �nal map, related categories belong to the same cluster
or to neighboring clusters. The reader interested by a detailed explanation of
the algorithm can refer to Bourgeois et al. [2015a] . More details and real-world
examples can also be found in Cottrell et al. [2004], Cottrell and Letrémy [2005].
Notice that the transformed tables are numerical data tables, and so there is no
particular theoretical results to comment on. All the results that we presented
for numerical data still hold.

7.2 Dissimilarity Data

In some cases, complex data such as graphs (social networks) or sequences (DNA
sequences) are described through relational measures of resemblance or dissem-
blance, such as kernels or dissimilarity matrices. For these general situations,
several extensions of the original algorithm, both in on-line and batch versions,
were proposed during the last two decades. A detailed review of these algorithms
is available in Rossi [2014].

More precisely, these extensions consider the case where the data are valued
in an arbitrary space X , which is not necessarily Euclidean. The observations
are described either by a pairwise dissimilarity D = (δ(xi, xj))i,j=1,...,N , or by a
kernel matrix K = (K(xi, xj))i,j=1,...,N

2. The kernel matrix K naturally induces
an Euclidean distance matrix, but the dissimilarity matrixDmay not necessarily
be transformed into a kernel matrix.

The �rst class of algorithms designed for handling relational data is based
on the median principle (median SOM ): prototypes are forced to be equal to
an observation, or to a �xed number of observations. Hence, optimal prototypes

2 A kernel is a particular case of symmetric similarity such that K is a symmetric
matrix, semi-de�nite positive with K(xi, xi) = 0 and satis�es the following positive
constraint

∀M > 0, ∀ (xi)i=1,...,M ∈ X , ∀ (αi)i=1,...,M ,
∑
i,j

αiαjK(xi, xj) ≥ 0.
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are computed by searching through (xi)i=1,...,N , instead of X , as in Kohohen
and Somervuo [1998], Kohonen and Somervuo [2002], El Golli et al. [2004a] and
El Golli et al. [2004b]. The original steps of the algorithm are thus transformed
in a discrete optimization scheme, which is performed in batch mode:

1. Equation (1) is replaced by the a�ectation of all data to their best matching
units: c(xi) = arg mink=1,...,K δ(xi,mk(t));

2. Equation (2) is replaced by the update of all prototypes within the dataset

(xi)i=1,...,N : mk(t) = minxi : i=1,...,N

∑N
j=1 hc(xi)j(t)δ(xi, xj).

Since the algorithm explores a �nite set when updating the prototypes, it
is necessarily convergent to a local minimum of the energy function. However,
this class of algorithms exhibits strong limitations, mainly due to the restric-
tion of the prototypes to the dataset, in particular, a large computational cost
(despite e�cient implementations such as in Conan-Guez et al. [2006]) and no
interpolation e�ect which yields to a deterioration of the quality of the map
organization.

The second class of algorithms, kernel SOM and relational/dissimilarity
SOM, rely on expressing prototypes as convex combinations of the input data.
Although these convex combinations do not usually have sense in X (consider,
for instance, that input data are various texts), a convenient embedding in an
Euclidean or a pseudo-Euclidean space gives a sound theoretical framework and
gives sense to linear combinations of inputs.

For kernel SOM, it is enough to use the kernel trick as given by Aron-
szajn [1950] which prove that there exists a Hilbert space H, also called fea-
ture space, and a mapping ψ : X → H, called feature map, such that
K(x, x′) = 〈ψ(x), ψ(x′)〉H. In the case where data are described by a symmet-
ric dissimilarity measure, they may be embedded in a pseudo-Euclidean space
ψ : x ∈ X → ψ(x) = (ψ+(x), ψ−(x)) ∈ E , as suggested in Goldfarb [1984]. E
may be written as the direct decomposition of two Euclidean spaces, E+ and E−,
with a non-degenerate and inde�nite inner product de�ned as

〈ψ(x), ψ(y)〉E = 〈ψ+(x), ψ+(u)〉E+ − 〈ψ−(x), ψ−(u)〉E−

The distance naturally induced by the pseudo-Euclidean inner product is not
necessarily positive.

For both kernel and relational/dissimilarity SOM, the input data are em-
bedded in H or E and prototypes are expressed as convex combinations of the
images of the data by the feature maps. For example, in the kernel case,

mk(t) =

N∑
i=1

γtkiψ(xi) , with γ
t
ki ≥ 0 and

∑
i

γtki = 1.

The above writing of the prototypes allows the computation of the distance
from an input xi to a prototype mk(t) in terms of the coe�cients γtki and the
kernel/dissimilarity matrix only. For kernel SOM, one has

‖ψ(xi)−mk(t)‖2 =
(
γtk
)T

Kγtk − 2Kiγ
t
k +Kii ,
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where Ki is the ith row of K and (γtk)
T

=
(
γtk,1, ..., γ

t
k,N

)
. For rela-

tional/dissimilarity SOM, one obtains a similar expression

‖ψ(xi)−mk(t)‖2 = Diγ
t
k −

1

2

(
γtk
)T

Dγtk .

The �rst step of the algorithm, �nding the best matching unit of an observation,
as introduced in Equation (1), can thus be directly generalized to kernels and
dissimilarities, both for on-line and batch settings.

In the batch framework, the updates of the prototypes are identical to the
original algorithm (see Equation (12)), by simply noting that only the coe�cients
of the xi's (or of their images by the feature maps) are updated :

mk(t+ 1) =

N∑
i=1

hkct(xi)(t)∑N
j=1 hkct(xj)(t)

ψ(xi)⇔ γt+1
ki =

hkct(xi)(t)∑N
j=1 hkct(xj)(t)

(17)

This step is the same, both for batch kernel SOM, Villa and Rossi [2007],
and for batch relational SOM, Hammer et al. [2007].

In the on-line framework, updating the prototypes is similar to the original
algorithm, as in Equation (2). Here also, the update rule concerns the coe�cients
γtki only, and the linear combination of them remains convex :

γt+1
k = γtk + ε(t)hkct(xi)(t)

(
1i − γtk

)
, (18)

where xi is the current observation and 1i is a vector in RN , with a single
non-null coe�cient, equal to 1, on the i-th position. As previously, this step is
identical for on-line kernel SOM, Mac Donald and Fyfe [2000], and for on-line
relational SOM, Olteanu and Villa-Vialaneix [2015].

In the case where the dissimilarity is the squared distance induced by the
kernel, kernel SOM and relational SOM are strictly equivalent. Moreover, in this
case, they are also fully equivalent to the original SOM algorithm for numerical
data in the feature (implicit) Euclidean space induced by the dissimilarity or the
kernel, as long as the prototypes are initialized in the convex hull of the input
data. The latter assertion induces that the theoretical limitations of the original
algorithm also exist for the general kernel/relational versions. Furthermore,
these may worsen for the relational version since the non-positivity of the
dissimilarity measure adds numerical instability when using a gradient-descent
like scheme for updating the prototypes.

The third class of algorithms uses the soft topographic maps setting intro-
duced in section 6.2. Indeed, in the algorithm described in equations (15) and
(16), the soft assignments depend on the distances between input data and pro-
totypes only, while prototypes update consists in making an update if the co-
e�cients of the input data. Using a mean-�eld approach and similarly to the
previous framework for kernel and dissimilarity/relational SOM, Graepel et al.
[1998] obtain the extensions of soft topographic mapping (STM) algorithm for
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kernels and dissimilarities. The updates for the prototype coe�cients are then
expressed as

γki(t+ 1) =

∑K
j=1 hjk(t)P(xi ∈ Aj)∑N

l=1

∑K
j=1 hjk(t)P(xl ∈ Aj)

, (19)

where mk(t) =
∑N
i=1 γ

t
kiψ(xi) and ψ is the feature map.

8 Stochasticity of the Kohonen maps for the on-line

algorithm

Starting from a given initialization and a given size of the map, di�erent runs of
the on-line stochastic SOM algorithm provide di�erent resulting maps. On the
contrary, the batch version of the algorithm is a deterministic algorithm with
always provides the same results for a given initialization. For this reason, the
batch SOM algorithm is often preferred over the stochastic one because its results
are reproducible. However, this hides the fact that all the pairs of observations
which are associated in a given cluster do not have the same signi�cance. More
precisely, interpreting a SOM result, we can use the fact that close input data
belong to close clusters, i.e. their best matching units are identical or adjacent.
But if two given observations are classi�ed in the same or in neighboring units
of the map, then they may not be close in the input space. This drawback comes
from the fact that there is not perfect matching between a a multidimensional
space and a one- or two-dimensional map.

More precisely, given a pair of observations (data), {xi, xj}, three cases can
be distinguished, depending on the way their respective mapping on the map
can be described:

� signi�cant association: the pair is classi�ed in the same cluster or in neighbor-
ing clusters because xi and xj are close in the input space. The observations
are said to attract each other;

� signi�cant non-association: the pair is never classi�ed in neighboring clusters
and xi and xj are remote in the input space. The observations are said to
repulse each other;

� �ckle pair : the pair is sometimes classi�ed in the same cluster or in neighbor-
ing clusters but xi and xj are not close in the input space: their proximity
on the map is due to randomness.

The stochasticity of the on-line SOM results can be used to precisely qualify
every pairs of observations by performing several runs of the algorithm. The
question is addressed in a bootstrap framework in de Bodt et al. [2002] and used
for text mining applications in Bourgeois et al. [2015a,b]. The idea is simple:
since the on-line SOM algorithm is stochastic, its repetitive use may allow to
identify the pairs of data in each case.

More precisely, if L is the number of di�erent and independent runs of the
on-line SOM algorithm and if Yi,j denotes the number of times xi and xj are
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neighbors on the resulting map in the L runs, a stability index can be de�ned:
for the pair (xi, xj), this index is equal to:

Mi,j =
Yi,j
L
.

Using an approximation of the binomial distribution that would hold if the data
were neighbors by chance in a pure random way, and a test level of 5%, for a
K-units map, the following quantities are introduced

A =
9

K
and B = 1.96

√
9

KL
(1− 9

K
). (20)

These values give the following decision rule to qualify every pair {xi, xj}:

� ifMi,j > A+B, the association between the two observations is signi�cantly
frequent;

� if A − B ≤ Mi,j ≤ A + B, the association between the two observations is
due to randomness. {xi, xj} is called a �ckle pair;

� ifMi,j < A−B, the non-association between the two observations is signif-
icantly frequent.

In de Bodt et al. [2002], the method is used in order to qualify the stability
and the reliability of the global Kohonen map, while both other papers (Bour-
geois et al. [2015a] and Bourgeois et al. [2015b]) study the �ckle data pairs for
themselves. In these last work, the authors also introduce the notion of �ckle
word which is de�ned as an observation which belongs to a huge number of
�ckle pairs by choosing a threshold.

These �ckle pairs and �ckle words can be useful in various way: �rst, �ckle
pairs can be used to obtain more robust maps, by distinguishing stable neigh-
boring and non neighboring pairs from �ckle pairs. Also, once identi�ed, �ckle
words can be removed from further studies and representations: for instance,
Factorial Analysis visualization is improved. In a text mining setting, Bourgeois
et al. [2015b] have shown that a graph of co-occurrences between words can be
simpli�ed by removing �ckle words and Bourgeois et al. [2015a] have used the
�ckle words for interpretation: they have shown that the �ckle words form a
lexicon shared between the studied texts.

9 Conclusion

We have reviewed some of the variants of the SOM, for numerical and non
numerical data, in their stochastic (on-line) and batch versions. Even if a lot of
theoretical properties are not rigorously proven, the SOM algorithms are very
useful tools for data analysis in di�erent contexts. Since the Heskes's variants
of SOM have a more solid theoretical background, SOM can appear as an easy-
to-develop approximation of these well-founded algorithms. This remark should
ease the concern that one might have about it.
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On a practical point of view, SOM is used as a statistical tool which has
to be combined with other techniques, for the purpose of visualization, of vec-
tor quantization acceleration, graph construction, etc. Moreover, in a big data
context, SOM-derived algorithms seem to have a great future ahead since the
computational complexity of SOM is low (proportional to the number of data).
In addition, it is always possible to train the model with a sample randomly
extracted from the database and then to continue the training in order to adapt
the prototypes and the map to the whole database. As most of the stochastic
algorithm, SOM is particularly well suited for stream data (see Hammer and
Hasenfuss [2010] which proposed a �patch SOM� to handle this kind of data).
Finally, it would also be interesting to have a look at the robust associations
revealed by SOM, to improve the representation and the interpretation of too
verbose and complex information.
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