
Random Forests and Big Data

Robin Genuer 1, Jean-Michel Poggi 2, Christine Tuleau-Malot3 & Nathalie
Villa-Vialaneix4

1 INRIA, SISTM team & ISPED, INSERM U-897, Univ. Bordeaux,
robin.genuer@isped.u-bordeaux2.fr

2 LMO, Univ. Paris-Sud Orsay & Univ. Paris Descartes,
jean-michel.poggi@math.u-psud.fr

3 Lab. Jean-Alexandre Dieudonné, Univ. Nice - Sophia Antipolis, malot@unice.fr
4 INRA, UR 0875 MIAT, 31326 Castanet Tolosan cedex, nathalie.villa@toulouse.inra.fr

Résumé. Le Big Data est un des grands défis que doit relever la statistique et a de
nombreuses conséquences sur les plans théorique et algorithmique. Le Big Data implique
toujours le caractère massif des données mais comprend bien souvent aussi des données
en flux (en ligne) et implique le traitement de données hétérogènes. Récemment certaines
méthodes statistiques ont été adaptées pour traiter le Big Data, par exemple les modèles
de régression linéaire, les méthodes de classification et les schémas de rééchantillonnage.
Basées sur des arbres de décision et exploitant les idées d’agrégation et de bootstrap, les
forêts aléatoires introduites par Breiman en 2001, sont une méthode statistique non pa-
ramétrique puissante et versatile permettant de prendre en compte dans un cadre unique
tant les problèmes de régression que les problèmes de classification binaire ou multi-classes.
Ce papier examine les propositions disponibles de forêts aléatoires en environnement pa-
rallèle ainsi que sur les forêts aléatoires en ligne. Ensuite, nous formulons diverses re-
marques avant d’esquisser quelques directions alternatives pour les forêts aléatoires dans
le contexte du Big Data.

Mots-clés. Big Data, Flux de données, Forêts aléatoires

Abstract. Big Data is one of the major challenges of statistical science and has
numerous consequences from algorithmic and theoretical viewpoints. Big Data always
involves massive data but it also often includes data streams and data heterogeneity.
Recently some statistical methods have been adapted to process Big Data, like linear re-
gression models, clustering methods and bootstrapping schemes. Based on decision trees
combined with aggregation and bootstrap ideas, random forests, introduced by Breiman
in 2001, are a powerful nonparametric statistical method allowing to consider in a single
and versatile framework regression problems as well as two-class or multi-class classifica-
tion problems. This paper reviews available proposals about random forests in parallel
environments as well as about online random forests. Then, we formulate various remarks
and sketch some alternative directions for random forests in the Big Data context.

Keywords. Big Data, Data streams, Random Forests

1



1 Introduction

Big Data is one of the major challenges of statistical science and a lot of recent references
start to think about the numerous consequences of this new context not only from the
algorithmic viewpoint but also scan theoretical implications (see [10]). Big Data always
involves massive data but it often also includes data streams and data heterogeneity, lead-
ing to the famous three V (Volume, Velocity and Variety) highlighted by the Gartner,
Inc., the advisory company about information technology research. Recently some statis-
tical methods have been adapted to process Big Data, including linear regression models,
clustering methods and bootstrapping schemes.

Based on decision trees and combined with aggregation and bootstrap ideas, random
forests (RF in the sequel), introduced by Breiman 2001 [1], are a powerful nonparametric
statistical method allowing to consider regression problems as well as two-class or multi-
class classification problems, in a single and versatile framework. So RF are widely used
(see [16, 17] for recent surveys) and exhibit extremely high performance with only a few
parameters to tune. Since, RF include intensive resampling and parallel construction
of a lot of models (the trees of a given forest), it is natural to think about the interest
of using parallel processing and considering massive data streams from a bootstrapping
perspective.

The paper is organized as follows: after this introduction, we briefly recall some basics
about RF, in Section 2. Then, Section 3 reviews some proposals about RF in parallel
environments and highlights some questions. Section 4 develops a similar outline about
online RF. Finally, Section 5 contains remarks and proposals.

2 Random Forests

Let L = {(x1, y1), . . . , (xn, yn)} be a learning set of independent observations of the ran-
dom vector (X, Y ), where X = (X1, ..., Xp) ∈ Rp is the vector of the predictors and
Y ∈ Y is the explained variable, with Y either a class label or a numerical response.
The principle of RF is to aggregate many binary decision trees coming from two random
perturbation mechanisms: the use of bootstrap samples of L instead of L and the con-
struction of a randomized tree predictor instead of CART [2] on each bootstrap sample.
There are two main differences with respect to CART trees: first, in the growing step, at
each node, a fixed number of input variables are randomly chosen and the best split is
calculated only among them, and secondly, no pruning is performed.

When using RF, a quantity of interest is the out-of-bag (OOB) error, which allows to
quantify the variable importance (VI in the sequel). The quantification of the variable
importance is crucial for many procedures involving RF, e.g., for ranking the variables
before a stepwise variable selection strategy (see [7]). For each tree t of the forest, consider
the associated OOBt sample (composed of data not included in the bootstrap sample used
to construct t). The OOB error rate is defined, in the classification case, by errOOB =

2



1
n
Card {i ∈ {1, . . . , n} | yi 6= ŷi}, where ŷi is the most frequent label predicted by trees t

for which (xi, yi) is in the associated OOBt sample.
Denote by errOOBt the error (MSE for regression and misclassification rate for clas-

sification) of tree t on its associated OOBt sample. Now, randomly permute the values of

Xj in OOBt to get a perturbed sample denoted by ˜OOBt

j
and compute err ˜OOBt

j
, the

error of tree t on the perturbed sample. The variable importance of Xj is then equal to

VI(Xj) = 1
ntree

∑
t(err ˜OOBt

j
− errOOBt), where the sum is over all trees t of the RF and

ntree denotes the number of trees of the RF.

3 Random forests in parallel environments

As explained in the introduction, RF are based on the definition of several independent
trees. It is thus straightforward to obtain a parallel and faster implementation of the RF
method, in which several trees are built in parallel. However, in the Big Data framework,
this is not enough: the amount of data to be processed is often even too large to be
performed by a single processor. One approach to deal with data which size exceeds the
computing capability of a single core is to rely on the MapReduce (MR) programming
paradigm. MR proceeds in two steps: in a first step, called the Map step, the data set
is split into several smaller chunks of data, each one being processed by a separate core:
these different map jobs are independent and produce a list of (key, value), where “key”
is a key indexing the data contained in “value”. Then, in a second step, called the Reduce
step, each reduce job proceeds all data corresponding to a given key value.

As indicated in [4], the standard MR version of RF, denoted by MR-RF in the re-
maining of this paper, is based on the parallel construction of trees obtained on bootstrap
subsamples of the data: each chunk of data is sent to an independent map job in which
a RF is built. There is no reduce job as the output of the map jobs is a collection of
RF which, all merged together, give the final forest. This adaptation of RF to the MR
framework has several drawbacks: 1) as noted by [12], data are rarely ordered randomly
in the Big Data world: items clustered on some particular attributes are often placed next
to each others on disk due to spatial locality. 2) The samples sent to every different map
job might well be specific enough to produce very heterogeneous forests. There would be
no meaning in simply averaging all those trees together to make a global prediction. 3)
As pointed out by [11], another limit of the approach comes from the fact that the success
of m-out-of-n bootstrap samples is highly conditioned on the choice of m, which can not
be well controlled or tuned within a MR implementation. 4) Given that the map jobs
are processed independently and only have access to a (small) part of the data, the OOB
error - and thus, the VI - cannot be obtained directly from the building of the forest.

3



4 Online random forests

General idea of online RF (ORF in the sequel) is to adapt RF methodology, in order to
handle the case where data arrive sequentially (also known as a “data stream”). An online
framework suppose that at time t, one does not have access to all the data from the past,
but only to the current observation. ORF are first defined in [15] and detailed only for
classification problems. They combine the idea of online bagging, from [14], Extremely
Randomized Trees (ERT), from [8], and a mechanism to update the forests each time a
new observation arrives.

Each time a new data arrives, the online bagging updates k times a given tree, where
k is sampled from a Poisson distribution to mimic a batch bootstrap sampling. ERT is
used instead of original Breiman’s RF, because it allows for a faster update of the forest:
in ERT, S splits are randomly drawn for every node, and the final split is optimized only
on those S candidate splits. Finally, all decisions made by a tree are only based on the
proportions of each class label among observations in a node. ORF keep up-to-date an
heterogeneity measure (based on these statistics) online. This measure determines the
class label of a node. When a new data arrives in a node, it is updated for all existing
leaves and for all potential new leaves created by the several candidate splits.

OOB error rate of a tree t is also estimated online: the current data is OOB for all
trees for which the Poisson random variable used to replicate the observation in the tree,
is equal to 0. The prediction provided for such a tree t is used to update OOBt. However,
as the prediction cannot be re-evaluated after the tree has been updated with next data,
this approach is only an approximation of the original OOBt.

Finally, the recent article [5] introduces a new variant of ORF. The two main differences
with the original ORF are that, 1) no online bootstrap is performed. 2) The data stream
is randomly partitioned in two streams, the structure stream and the estimation stream.
Data from structure stream only participate on the splits optimization, while data from
estimation stream are only used to allocate a class label to a node. Thanks to this
partition, authors manage to obtain consistency results.

5 Perspectives

This section’s purpose is to provide a brief discussion about possible alternatives to over-
come the limits of the existing solutions that we have described previously.

As explained in Section 2, OOB error and VI are important diagnostic tools but
these quantities may be unavailable directly in the RF variants described above. First,
due to the independence of the different map jobs, the OOB error cannot be computed
in the RF-MR variant: each forest trained in a map job is unaware of the data which
have not be sent to its map and the indexes of the data that have been used to train a
given forest are lost in the output of the map jobs so there is no way to obtain the OOB
error in the sense that is given in Section 2. However, an approximation of this error can

4



be obtained restricting its computation to a given chunk of data and averaging them all.
The ORF provides an estimation of errOOBt, as described in Section 4. This estimation
could be used to update online an estimation of errOOB. However, permuting the values
of a given variable when the data arrive in stream and are not stored after they have been
processed is still an open issue for which [15, 5] give no solution. Hence, VI cannot be
simply defined in the online framework.

The first limit of MR-RF that has been pointed in Section 3 is the possible sampling
bias coming from the split of data in several chunks for the parallel map jobs. This
could be addressed with a more careful design of the data partition, using at least a
random partition of the data or, probably more efficiently, a stratification performed on
the explained variable values. [12, 9, 13] propose methods to subsample the data in a Big
Data context, some of these methods allowing for stratified subsampling or subsampling
that satisfies a given predicate. Using these methods prior to RF or MR-RF could help to
overcome the problem of the splitting bias. An interesting alternative to a simple random
subsample would be to use the BLB (Bag of Little Bootstrap) method described in [11],
which aims at building bootstrap samples of size n, each one containing only m � n
different data. The size of the bootstrap sample is the classical one (n), thus avoiding
the problem of the m-out-of-n bootstrap method, but the processing of this sample is
simplified and manageable even for very large n because it contains only a small fraction
(m/n) of the original data set.

Finally, we conclude with a few proposals for alternative variants to MR-RF. First,
the computational cost of building a single tree could be reduced: many simplifications for
the construction of trees are available. The idea is not to choose the variable involved in a
split and the associated threshold from the data but to randomly choose them according
to different schemes (see [3] for PERT, Perfect Random Tree Ensembles, [8] for ERT,
Extremly Randomized Trees, and [6] for PRF, Purely Random Forests). Another possible
variant would be to consider the whole forest as an ensemble of forests and to adapt the
majority vote scheme with weights that address, e.g., the issue of the sampling bias.
Finally, another direction would be to use ORF in the Big Data framework, addressing
both the issue of Volume and Velocity: using an update scheme, instead of the building
forest in parallel until all data have been processed, could be a way to use only a portion
of the data set until the forest is accurate enough.

References

[1] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] L. Breiman, J. Friedman, R. Olsen, and C. Stone. Classification and Regression Trees. Chapman
and Hall, New York, USA, 1984.

[3] A. Cutler and G. Zhao. Pert-perfect random tree ensembles. Computing Science and Statistics,
33:490–497, 2001.

[4] S. del Rio, V. López, J.M. Beníıtez, and F. Herrera. On the use of MapReduce for imbalanced big
data using random forest. Information Sciences, 285:112–137, 2014.

5



[5] M. Denil, D. Matheson, and N. de Freitas. Consistency of online random forests. In Proceedings of
the 30th International Conference on Machine Learning (ICML 2013), pages 1256–1264, 2013.

[6] R. Genuer. Variance reduction in purely random forests. Journal of Nonparametric Statistics,
24(3):543–562, 2012.

[7] R. Genuer, J.M. Poggi, and C. Tuleau-Malot. Variable selection using random forests. Pattern
Recognition Letters, 31(14):2225–2236, 2010.

[8] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1):3–42,
2006.

[9] R. Grover and M.J. Carey. Extending map-reduce for efficient predicate-based sampling. In Proceed-
ings of IEEE International Conference on Data Engineering (ICDE 2012), pages 486–497, Wash-
ington, DC, USA, 2012.

[10] M.I. Jordan. On statistics, computation and scalability. Bernoulli, 19(4):1378–1390, 2013.

[11] A. Kleiner, A. Talwalkar, P. Sarkar, and M.I. Jordan. The big data bootstrap. In Proceedings of
29th International Conference on Machine Learning (ICML 2012), Edinburgh, Scotland, UK, 2012.

[12] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics on mapreduce. In
Proceedings of the 28th International Conference on Very Large Data Bases, volume 5 of Proceedings
of the VLDB Endowment, Istanbul, Turkey, 2012.

[13] X. Meng. Scalable simple random sampling and stratified sampling. In Proceedings of the 30th
International Conference on Machine Learning (ICML 2013), volume 28 of JMLR: W&CP, Georgia,
USA, 2013.

[14] N.C. Oza. Online bagging and boosting. In Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, volume 3, pages 2340–2345. IEEE, 2005.

[15] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In Proceedings
of IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pages
1393–1400. IEEE, 2009.

[16] A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests: a survey and results
of new tests. Pattern Recognition, 44(2):330–349, 2011.

[17] A. Ziegler and I.R. König. Mining data with random forests: current options for real-world ap-
plications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(1):55–63,
2014.

6


	Introduction
	Random Forests
	Random forests in parallel environments
	Online random forests
	Perspectives

