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Abstract 

Context. Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight 

and related bioclinical settings changes. 

Objective. To implement AT gene expression profiling and investigate the link between changes in 

bioclinical parameters and AT gene expression during three steps of a two-phase dietary intervention 

(DI). 

Design. AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 

556 distinct individuals enrolled in a weight loss intervention (8-week low calorie diet (LCD) at 800 

kcal/d) followed with a 6-month ad libitum randomized DI. 

Methods. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against 

Illumina RNAseq. RT-qPCR was used to further confirm associations. Cell specificity was assessed 

using freshly isolated cells and THP-1 cell line. 

Results. During LCD, five modules were found, of which three included at least one bio-clinical 

variable. Change in BMI connected with changes in mRNA level of genes with inflammatory response 

signature. In this module, change in BMI was negatively associated to changes in expression of genes 

encoding secreted protein (GDF15, CCL3 and SPP1).  

Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and 

CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, 

CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in 

preadipocytes.  

Conclusion. Network analyses identified a novel AT feature with GDF15 upregulated with calorie 

restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed 

in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells. 
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Precis 

A data driven approach in obese humans during and after calorie restriction revealed adipose tissue 

GDF15 gene expression upregulated during weight loss with a cluster of macrophages genes. 
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Introduction 1 

Combining biomarker and phenotypic data provides valuable opportunity to identify signatures of 2 

diseases as well as response to treatments or lifestyle interventions, which may have implications for 3 

understanding biology and clinical management (1–3). 4 

Excess adiposity is associated to numerous comorbidities including metabolic complications such as 5 

insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular diseases (CVD) (4,5). Adipose tissue 6 

(AT) is the main lipid storage organ of the human body. Through active secretory functions, it may 7 

directly, or indirectly via cognate receptor, influence the activity of other metabolic organs such as 8 

liver and skeletal muscle. AT secreted proteic factors, so-called adipocytokines are produced by 9 

either adipocytes, precursor cells or resident AT macrophages. These cell types modify gene 10 

expression in response to AT expansion or reduction. Furthermore, an AT dysfunction leads to an 11 

altered secretory profile and is associated with increased inflammation and fibrosis (6). The plasticity 12 

of AT during weight loss has been assessed by several gene expression studies, including 13 

transcriptome-wide analyses (7) and targeted candidate approach (8). Yet, changes occurring 14 

following weight loss and their link with weight regain still remain far from complete (9).  15 

Additionally, very little is known about the relationship between weight regain, AT gene expression 16 

changes, and other clinical readouts such as indices of insulin resistance, and markers of CVD.  So far, 17 

most studies have focused on pairwise assessment between a given transcript and a single clinical 18 

readout. De facto, this limits our understanding of the physiological changes. Systems biology aims to 19 

dissect complex relationships across the multiple scales of organization that characterize biological 20 

systems (10,11). In particular, networks have proven useful to unravel the complex relations 21 

(regulation, co-regulation) existing between gene expression profiles under various environmental 22 

conditions (12). They are also a powerful approach to provide a global and comprehensive image of 23 

the systems functioning related to complex traits by studying jointly multiple clinical parameters 24 

(13,14). 25 
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In this study, we aim to characterize AT gene expression changes during a two-phase dietary 26 

intervention in overweight and obese subjects using unsupervised and hypothesis-free methods. This 27 

allowed us to identify modules of co-regulated genes related with clinical parameters pertaining to 28 

weight regain, insulin-resistance and risk factors for developing CVD.  29 

 30 

Material and Methods 31 

Ethics 32 

All studies were performed according to the latest version of the Declaration of Helsinki. Local ethics 33 

committees approved all procedures that involved human participants and written informed consent 34 

was obtained from all participants.  35 

Randomized dietary intervention study design 36 

The DiOGenes study (15) is a pan-European, multi-center, randomized controlled dietary intervention 37 

program (NCT00390637). A CONSORT flowchart describing the intervention is shown in Figure 1A. In 38 

this study, 938 overweight/obese, non-diabetic subjects followed a low-calorie diet (LCD) for eight 39 

weeks using a meal replacement product (Modifast 800kcal/d, Nutrition et Santé, France). Subjects 40 

achieving at least 8% of body weight loss were then included in a 6-month randomized dietary 41 

intervention (DI) and were assigned to one of five ad libitum maintenance diets, consisting in low 42 

protein/low glycaemic index, low protein /high glycaemic index, high protein/low glycaemic index, 43 

high protein/ high glycaemic index, and control according to current national dietary guidelines. 44 

Abdominal subcutaneous AT biopsies were obtained by needle aspiration, about 10 cm from the 45 

umbilicus, under local anesthesia after an overnight fast. Plasma and AT samples were stored at -46 

80°C until processing. BMI, total plasma lipid levels, waist circumference and HOMA-IR were 47 

obtained at baseline, upon weight loss and study termination. Lipid levels and HOMA-IR were 48 

quantified following an overnight fast. 49 

 50 
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DiOGenes transcriptome analyses  51 

Total RNA was extracted from AT samples as previously described (8). RNA samples were then 52 

quantified with a fluorimetric method (Ribogreen, Thermo Fischer) and their integrity evaluated on a 53 

fragment analyzer (Advanced Analytical). Good quality RNA was available for 471 individuals at 54 

clinical investigation day (CID)1 (baseline), 330 at CID2 (at the end of the 8-w LCD) and 250 at CID3 55 

(at the end of the 6-month DI) (Figure 1B). After sample randomization, 500 ng RNA was loaded on 56 

multi-well plates, dried by vacuum concentration, and resuspended into 5 µL nuclease free water. 57 

Sequencing libraries covering the 3’-end of messenger RNA were prepared using the QuantSeq 3' 58 

mRNA-Seq Library Prep Kit from Lexogen, strictly following the manufacturer’s recommendations. 59 

The optimal number of PCR cycles (15 cycles) was empirically evaluated by quantitative PCR. Libraries 60 

were all quantified with a fluorimetric method (Picogreen, Thermo Fischer) and their size pattern 61 

evaluated on a fragment analyzer (Advanced Analytical). Libraries were pooled equimolar by 96 and 62 

clustered at a concentration of 9 pmol on 4 lanes of single read sequencing flow cells (Illumina). 63 

Sequencing was performed for 65 cycles on a HiSeq 2500 (Illumina) using the SBS v4 chemistry 64 

(Illumina). 65 

After demultiplexing with bcl2fastq (standard parameters), sequencing reads were trimmed with 66 

BBDuk (BBTools version 35.85, Bushnell B., sourceforge.net/projects/bbmap/) using the parameters 67 

k=13, ktrim=r, forcetrimleft=11, mink=5, qtrim=t, trimq=10, minlength=20, rcomp=f, and providing 68 

the sequence of the QuantSeq adaptors. Mapping to the human genome (built GRCh38.p2) was 69 

performed with RNA STAR (16) (version 2.3.0e and using default parameters). Gene count was 70 

performed with HTSeq (17) (version 0.5.4p3, with the parameters mode=intersection-nonempty, 71 

stranded=yes, a= 10, and type=exon). The annotation file used was based on GENCODE (18) release 72 

25 but was filtered for transcripts not classified as pseudogenes and with a transcript support level 73 

“1” (for high quality annotation) or “NA” (for single exon transcripts). Only seven samples did not 74 

reach the manufacturer’s recommended criteria of 3M sequencing reads. Those samples were 75 

reprocessed. 76 
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PCA was performed on log2 transformed count data to identify possible outliers and batch effects. 77 

This allowed to remove 3 atypical samples from the analysis (see Supplementary Figure S1). A second 78 

PCA without these atypical samples allowed to identify a possible blood contamination in most 79 

samples from UK. Samples with HBB larger than 20% (50 samples) were also removed from 80 

subsequent analysis, together with a remaining outlier (see Supplementary Figure S2). In addition, 81 

one plate with 79 samples had a higher variability than the other plates. Normalization was not able 82 

to correct this plate-effect but differential analysis with and without the samples from this plate gave 83 

very reproducible results (see Supplementary Figure S3). So we decided to remove the samples from 84 

this plate from the analysis as well. This resulted in using 918 samples from 556 unique individuals in 85 

the remaining of the analyses, distributed at the different time steps, as shown in Supplementary 86 

Figure S4. 87 

 88 

Statistical analyses of QuantSeq data 89 

Unless specified otherwise, all statistical analyses were performed using R (version 3.4)(19). The overall 90 

analysis strategy is summarized in Figure 2. 91 

Differential analysis Pairwise time step analyses were performed to detect differentially expressed 92 

genes between two CID (i.e., contrasts: CID1 vs CID2, CID1 vs CID3 and CID2 vs CID3). For each 93 

analysis, raw count data were normalized using the TMM approach (20) implemented in the R 94 

package edgeR (21). Then, differentially expressed genes between the two conditions were extracted 95 

using a Negative Binomial test with a fixed effect for the individual and a log ratio test. Multiple test 96 

correction was performed with Benjamini-Hochberg (BH) False Discovery Rate (FDR)(22) within each 97 

contrast and significance was set at FDR 5%. Genes whose expression was found equal to 0 in more 98 

than 25% of the samples were removed from the analysis, as were genes whose expression was too 99 

low in one condition, resulting in an impossible estimation of their fold change (FC). In addition, since 100 

high dimensional data (n < p) would cause estimation issues for network inference methods, we 101 
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further restricted our list of differentially expressed genes to those having an absolute log fold-102 

change (FC) greater than log2(1.3). 103 

Integration of clinical and transcriptome data Associations between clinical variables (BMI, total 104 

lipid levels, waist circumference and HOMA-IR) and gene expression were tested using linear mixed 105 

effect models. Changes in gene expression (CPM log2 FC), gender and age were modelled as fixed 106 

effects; the center was modelled as a random effect. Adjustment for multiple testing was performed 107 

using BH correction. 108 

Network inference and mining Similarly to (11), we performed a multi-step network inference to 109 

obtain a comprehensive model of the overall interactions between gene expressions and clinical 110 

variables. In such a model, nodes of the network correspond to genes or clinical variables and edges 111 

correspond to strong and direct interactions between changes in gene expressions and/or clinical 112 

variables between two-time steps.  113 

Edges between genes and clinical variables were inferred using the aforementioned mixed effect 114 

models. Edges between genes were inferred using the graphical Lasso (GLasso (23) as implemented in 115 

the R package huge) on the logFC expression of differentially expressed genes for each contrast. Unlike 116 

pairwise measure of associations, such as Pearson correlation coefficients, GLasso is based on partial 117 

correlations and provides a stronger criterion for dependency by adjusting for common co-expressed 118 

genes. This method is useful in order to filter out false positives by discovering only the most direct 119 

interactions. Tuning of the GLasso regularization parameter was performed using the RIC criterion (see 120 

Supplementary Methods). Finally, an unsupervised clustering of the nodes was performed for the 121 

three networks using the modularity (24) optimization method of Reichardt et al. (25), as implemented 122 

in the R package igraph (26). This led to obtain strongly connected groups of genes and/or clinical 123 

variables for each network. 124 

Pathway analysis The biological functions represented by genes in each module were searched using 125 

Ingenuity Pathways Analysis (IPA) software version 7.5 (Ingenuity Systems, Redwood City, CA). Genes 126 
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for which IPA reported location as “Extracellular Space” were considered to encode secreted factors. 127 

The significance of canonical pathways was tested using the Fisher Exact test with the User Dataset 128 

of the 3 reference sets for each contrast. 129 

AT cell isolation 130 

The AT fractionation was performed as described in (27). Briefly, after collagenase digestion (250 131 

U/mL in phosphate-buffered saline (PBS), 2% bovine serum albumin (BSA), pH 7.4, volume/volume) 132 

of the AT for 30min at 37°C, the cell suspension was filtered through a 250 µm filter. The floating 133 

mature adipocytes were collected, washed 3 times and stored at -80 °C. The remaining stroma 134 

vascular fraction (SVF) was obtained after centrifugation. SVF cells were treated with erythrocyte 135 

lysis buffer (155 mmol/L NH4Cl; 5.7 mmol/L K2HPO4; 0.1 mmol/L EDTA; pH 7.3) followed by 136 

successive filtrations through 100, 70, and 40 -µm strainers. The viable recovered cells were counted 137 

and, after washing, the different SVF cells were isolated using an immunoselection/depletion 138 

approach utilizing magnetic microbeads coupled to specific CD antibodies (CD31, CD34, CD14) which 139 

are membrane cell markers to select the different SVF cell types. The preadipocytes are CD34-140 

positive cells (CD34+) and CD31-negative (CD31-) cells. The CD34-negative cells (CD34-) are immune 141 

cells (macrophages which are also CD14+ cells and lymphocytes which are CD14- cells) as described 142 

in (28). The cell extracts were collected and stored at -80°C until RNA extraction.  143 

THP-1 cell culture 144 

THP-1 cells were used as a human macrophage cell model. The cells were cultured in a humidified 145 

incubator at 37 °C with 5% CO2 in RPMI 1640 (Gibco) supplemented with 10% heat-inactivated FCS 146 

(VWR) and 100 units/mL penicillin, 100 μg/mL streptomycin and 10mM HEPES (Gibco). Cells were 147 

seeded at 5.5 × 105 cells/mL in 1 mL into 12 wells culture plates, then differentiated into M0 148 

macrophage-like cells by stimulation with PMA 1 ng/mL (Sigma Aldrich) for four days followed by 48h 149 

without PMA. To alter the phenotype, macrophages were primed for 48h with fresh medium 150 

supplemented with LPS (2 ng/mL; Miltenyi Biotec) and IFN-γ (10 ng/mL; Miltenyi Biotec) to 151 
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differentiate into the M1-like phenotype, or IL-4 (20 ng/mL; Miltenyi Biotec) to the M2-like 152 

phenotype. After washing, cell extracts were collected and stored at -80°C until RNA extraction. 153 

Adipose tissue explants 154 

AT explants were used for ex vivo studies. AT samples of about 400 mg obtained from needle 155 

biopsies in 11 overweight (mean BMI 27.7 kg/m2, SD 3.7) women aged 36.1 Y (SD 5.1) were cut into 156 

small pieces and incubated for 4h in 4ml of Krebs/Ringer phosphate buffer supplemented with 1g/L 157 

glucose and 20g/L BSA as described in (29). 158 

RT-qPCR validation  159 

Three hundred fifty-nine (359) individuals had good quality RNA at all 3 CIDs. The cDNA prepared 160 

from 500 ng of total RNA and processed using the using Superscript II reverse transcriptase 161 

(Invitrogen, St Aubin, France) in the presence of random hexamers were analyzed using the StepOne 162 

Plus Real-Time PCR system (Applied Biosystems, Carlsbad, CA) and TaqMan assays (Applied 163 

Biosystems) as described in Sramkova et al (29). The Taqman assays were obtained from Applied 164 

Biosystems and the respective IDs were: GDF15 (Hs00171132_m1), SPP1 (Hs00959010_m1), CD68 165 

(Hs00154355_m1), LIPA (Hs01548815_m1), CCL3 (Hs00234142_m1), PSMC4 (Hs00197826_m1), 166 

PUM1 (Hs01120030_m1), and 18S (Hs99999901_s1). The relative gene expression was calculated as 167 

2-ΔCt using PUM1 as reference gene for full AT samples, PSMC4 for THP1 cells or 18S for AT isolated 168 

cells data. 169 

ELISA assays  170 

GDF15 concentration in the buffer used for explants experiments was assessed using the ELLA 171 

SinglePlex assays (ProteinSimple, San Jose, California, USA). Plasma protein levels of GDF15 were 172 

measured in duplicate using human GDF15 ELISA kit (Human GDF-15 Quantikine ELISA Kit, Bio-173 

Techne), following manufacturer’s instructions. The GDF15 concentrations were calculated using 174 

sigmoidal standard curve fitted by nonlinear regression analysis for each test. 175 
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Statistical analyses of RT-qPCR and ELISA data 176 

Gaussian distribution was tested using the D’Agostino & Pearson test. As data normality was not 177 

fulfilled, comparison of expression distribution between groups was performed using Kruskall-Wallis 178 

or Friedman test for unpaired or paired data respectively and Dunn’s multiple comparison test. 179 

Linear regression was performed with change in BMI as dependent variable. 180 

 181 

Results 182 

 183 

Baseline characteristics and overall dietary intervention outcome 184 

In this report, we investigated gene expression changes within a subset of both men and women that 185 

had followed a two-phase dietary intervention (see Methods and Figure 1A) and for which RNA 186 

samples from AT biopsies were available (Figure 1B). At baseline, subjects were on average 41 years 187 

old, with a mean BMI close to 35 kg/m2 and a mean HOMA-IR at 2.93 (Table 1). Upon LCD, individuals 188 

achieved, on average, 11% weight loss and upon study termination (6-months after weight loss) 189 

10.8% weight loss. Both genders achieved similar weight loss relative to baseline (p=0.2376). These 190 

characteristics are representative of all 918 enrolled subjects in the DiOGenes study. 191 

 192 

Differential gene expression analysis 193 

Upon quality control of the sequencing data (see Methods and Figure 1B), we assessed which genes 194 

were differentially expressed between each paired clinical intervention time points (CID).  195 

After filtering of low-quality genes, 6,290 genes were found differentially expressed for the contrast 196 

CID1/2, 5,263 for the contrast CID1/3 and 4,461 for the contrast CID2/3. This resulted in a list of 197 

9,156 unique genes that were found differentially expressed for at least one of the contrasts, among 198 

which 1,228 were found differentially expressed for the three contrasts, as shown in Supplementary 199 
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Figure S5. Among these genes, 541 had an absolute log FC > log2(1.3) for the contrast for CID1/2, 470 200 

for the contrast CID1/3 and 661 for the contrast CID2/3 (for a total of 1,160 unique genes, used for 201 

network inference as shown in Supplementary Figure S5). The list of expressed genes with results on 202 

filtering and differential analysis can be found as supplementary material (Supplementary File S1). 203 

 204 

Replication with RNASeq data 205 

Taking advantage of previously generated RNAseq data for the CID1/2 contrast for 191 subjects (7), 206 

we compared the RNAseq and QuantSeq technologies. Based on expression levels from 19,938 207 

genes, we found a very strong correlation in expression fold-changes during LCD (Pearson r2=70% 208 

with 95% CI [69.7%-71.2%], see Supplementary Figure S6A). Next, we attempted to replicate the 541 209 

genes found differentially expressed with the QuantSeq analyses during LCD. At FDR 5%, 481 of those 210 

genes replicated with RNAseq analysis (Supplementary Figure S6B), thereby demonstrating a 90% 211 

replication rate between the two technologies. 212 

 213 

Network analyses reveal GDF15 as a novel partner in adipose tissue inflammation related genes  214 

We used a system biology approach to investigate the link between AT gene expression and clinical 215 

parameters during a 2-phase DI including a LCD and the subsequent 6-month weight follow-up.  216 

The first network analysis investigated the link between changes in AT gene expression and clinical 217 

parameters during the LCD-induced weight loss phase (see Figure 3). The network was centered on a 218 

clinical parameter, BMI, with both positive and negative relationship to a bunch of genes. Clustering 219 

of the nodes (representing genes or clinical parameters with significant changes) of the graph was 220 

performed. It revealed 5 modules with respectively 111, 89, 41, 131, and 131 nodes, with 3 of these 221 

modules including at least one clinical parameter (See Supplementary File S2 for a full description of 222 

the modules). Most of the modules contained more than 70% of down-regulated genes, except for 223 
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the module containing BMI that exhibited 89% of up-regulated genes. The lists of genes associated to 224 

clinical variables in each module are displayed in the Supplementary File S3.  225 

Pathway analyses of the genes were therefore performed for each module (supplementary Table S1). 226 

Total cholesterol, LDL-cholesterol and HOMA-IR were included in the same module which contained 227 

108 genes. “Cell development” and “lipid metabolism” were the top biological functions and 228 

pathways represented. The changes in the mRNA level for 28 genes were positively connected to 229 

changes in total cholesterol (and 6 genes with negative association). The change in LDL-cholesterol 230 

was connected to change in mRNA level for 3 genes: SSTR2 (positively), U1 and U1.1 (negatively). 231 

These 3 genes were also connected to total cholesterol in the same manner. The lincRNA 232 

RP3.483K16.4 was the single gene connected, positively, to HOMA-IR.  The module including waist 233 

circumference contained 130 genes with 85% positively connected to waist circumference, indicating 234 

that the highest was the reduction in waist circumference the greatest was the downregulation of 235 

expression of these genes. “Lipid metabolism” was the top biological function represented.  Four 236 

genes encoded secreted proteins (APOC4, EGFL6, SEMA3C, TNMD). The BMI centered module 237 

included 130 genes among which 80 were connected to BMI and, for 91%, with negative relationship 238 

(Supplementary Figure S7A). “Inflammatory response” was the top biological function represented 239 

with 51 genes. Fourteen genes encoded secreted factors (CCL3, CHI3L1, CHIT1, FCGBP, FCGR3A, 240 

FCMR, GDF15, IFI30, PILRA, PLA2G7, SDC4, SPP1, TREM2, ZG16B), among which 12 were negatively 241 

connected to BMI indicating that the highest was the decrease in BMI, the greatest was the up-242 

regulation of expression of these genes.  243 

Our two subsequent network analyses investigated changes during the weight follow-up (CID2/3) 244 

and the overall DI (CID1/3). We identified 7 modules (with size 20-83 nodes) for CID1/3 and 8 245 

modules (size 6-142) for CID2/3 (see details in Supplementary File S2). Both networks exhibited a 246 

module containing BMI as biological variable. For each contrast, the biological functions represented 247 

in the modules with BMI were “organismal injuries” and “lipid metabolism” (supplementary Table 248 
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S1). The “lipid metabolism” pathway was representative of the module containing HDL for CID2/3. 249 

Regarding these two contrasts (CID1/3 and CID2/3), the modules containing the BMI were composed 250 

of genes representing different biological functions (lipid metabolism and organismal injuries, 251 

respectively). Also, both networks contained a module with a cluster of co-regulated genes 252 

composed of CCL3, CD68, GDF15, LIPA, and SPP1 (Supplementary Figures S7B and S7C). 253 

The cluster was also found in the module containing BMI from the LCD-induced weight loss phase 254 

(Supplementary Figure S7A). This observation led us to focus on GDF15 which was recently reported 255 

as a nutritional stress marker (30), and the four other genes of the cluster  (CCL3, CD68, LIPA, and 256 

SPP1) which are markers for AT macrophages (31). 257 

 258 

Validation using RT-qPCR 259 

Validation of findings used RT-qPCR and a larger subset of the DiOGenes study (590 individuals, 116 260 

men and 474 women at baseline, including 352 individuals with paired samples regarding all 261 

contrasts).  262 

The negative association between the change in AT GDF15 gene expression and the change in BMI 263 

was confirmed during LCD (contrast CID1/2). A low positive association was found during weight 264 

follow-up, but not across the whole dietary intervention (Supplementary Figure S8). 265 

All five genes of the cluster of macrophage markers had relative expression significantly different 266 

between all pairwise time-contrasts (and with FDR adjusted p-values < 0.05). Notably all genes 267 

marked a strong up-regulation during LCD, followed with a down-regulation during the following 6-268 

month weight control phase and with expression levels significantly lower than their baseline levels 269 

(Figure 4).  270 
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Reports of GDF15 in AT are scarce, and none describe the cell type of origin. Therefore, we compared 271 

GDF15 expression between isolated adipocytes and stroma vascular cells isolated from human AT 272 

together with gene expression of CCL3, CD68, LIPA, and SPP1. 273 

Compared to isolated adipocytes, GDF15 mRNA levels were higher in the stromal fraction, mainly in 274 

pre-adipocytes and macrophages (Figure 5). The four other genes were predominantly expressed in 275 

macrophages. 276 

We next investigated the expression profile of these 5 genes according to phenotypic profile of the 277 

human macrophages cell line THP-1.  Once induced to M0 macrophages, the THP-1 cells were 278 

polarized to M1-like (pro-inflammatory) or M2-like (anti-inflammatory) phenotype. All genes 279 

exhibited differential expression between M1 and M2 THP-1 cells, with CD68, GDF15, and LIPA 280 

having higher expression in M2 than M1 macrophages, while CCL3 and SPP1 mRNA levels were 281 

higher in M1 cells (Figure 6).  282 

 283 

Analyses of GDF15 protein 284 

Next, we sought to confirm the observed AT GDF15 mRNA levels at the protein levels in AT and 285 

blood.  The secretion of GDF15 by AT was assessed using subcutaneous AT explants from 11 286 

overweight women. GDF15 concentration in the media from the AT explants was 440.9 ± 114.2 287 

pg/mL (mean ± SD, data not shown). Changes in circulating GDF15 was investigated in a subset of 28 288 

individuals with both plasma samples, clinical and AT RT-qPCR data available at all CIDs. At baseline 289 

plasma GDF15 was 473.5 ± 184.9 pg/mL. No significant change in plasma GDF15 was found across all 290 

phases of the dietary intervention (p= 0.4908, Supplementary Figure S9A). A positive association 291 

between plasma GDF15 and GDF15 gene expression in adipose tissue was observed at baseline 292 

(Supplementary Figure S9B), but no correlation between change in AT GDF15 expression and 293 

variations in plasma concentrations was found (p-value > 0.5). The negative association between 294 

change in plasma GDF15 and change in BMI during the LCD was previously reported (32), but no 295 



 18 

significant association was found during weight follow-up or across the whole DI (p-value > 0.4) (data 296 

not shown). 297 

 298 

Discussion  299 

In this study, we investigated gene expression changes in AT, during a two-phase dietary intervention 300 

in overweight/obese, non-diabetic subjects. Our systems biology approach enables to relate such 301 

changes with changes in different clinical parameters associated to obesity or comorbidities (BMI, 302 

waist circumference, total lipid levels, and HOMA-IR). In a discovery phase, we implemented the 303 

QuantSeq technology (33) that enables to substantially reduce the sequencing costs (by about 5x 304 

only in term of reagent costs), while keeping high-quality transcriptomic profiling for all Human 305 

protein-coding genes. This allowed us to assess a large RNA collection (>1,000 samples stemming 306 

from a clinical intervention). Re-analysis with nearly 400 samples using Illumina RNASeq 307 

demonstrated a 90% replication rate. Also, our validation phase, using RT-qPCR in >1,000 samples 308 

further reproduced our initial findings, thereby validating the QuantSeq technology. 309 

Through a network-based approach, we identified BMI as a key node, indicating that this specific 310 

clinical outcome has a major link with gene expression. Also, there was one specific transcriptomic 311 

cluster including the GDF15 gene, whose expression change during weight loss was linked with BMI 312 

change. Of note, GDF15 was not identified in previous differential gene expression analyses following 313 

LCD-induced weight loss (7). GDF15 (growth differentiation factor 15)/MIC-1 (macrophage inhibitory 314 

cytokine-1)/NAG-1 (nonsteroidal anti-inflammatory drug-activated gene) is a member of the 315 

transforming growth factor β (TGF-β) superfamily, that was first identified as a blocker of 316 

macrophage activation (34). Its expression is ubiquitous and circulating concentration range is high 317 

(35). Recently, GDF15 has generated considerable attention in the field of obesity and weight 318 

control. Notably, targeting GDF15 for the treatment of obesity and anorexia is the subject of several 319 

studies (35–40).  320 
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Preclinical studies in mice showed that GDF15 suppresses food intake (41) and recombinant GDF15 321 

administration lowers body weight (42). Also, GDF15 can directly increase thermogenesis and 322 

improve insulin sensitivity (43). In human, a rise in blood levels was reported with acute 323 

exercise (32,44) and exercise training (45). Regarding weight loss, during or after termination of 324 

calorie restriction, an increase was observed in obese individuals upon bariatric surgery (46), and 2 325 

weeks metformin-induced weight loss (47). Small-scale dietary studies also showed no (PMID: 326 

32020057 DOI: 10.1038/s41430-020-0568-9) or slight increase in plasma GDF15 following light or 327 

drastic calorie restriction, for 48h or over 28 days (30). This was also confirmed in serum upon very-328 

low calorie diet (48). In addition, T2D patients exhibited lower GDF15 plasma levels 6 months after 329 

the termination of an 8-week very-low calorie diet (PMID: 33925808 PMCID: PMC8146720 DOI: 330 

10.3390/nu13051465). Hence, circulating GDF15 is considered as a nutritional stress marker (30).  331 

Only few studies investigated the ATs (51,52). In our study, we found that GDF15 is released by AT 332 

and GDF15 gene expression in AT was up-regulated upon an 8-week low calorie diet, in association 333 

with change in BMI and independently of change in plasma lipid profile or insulin resistance. The 334 

baseline plasma level was in range with other studies (37). No significant change was found in plasma 335 

(p>0.4). This might be due to the low power of the plasma study (only 28 individuals were 336 

investigated), or a low contribution of AT to circulating GDF15 compared to other tissues, as 337 

suggested by the lack of association between changes in AT GDF15 expression and variations in 338 

circulating GDF15. In AT, we noticed that the GDF15 up-regulation was only transient, as GDF15 gene 339 

expression levels were significantly reduced in the 6-month following the acute weight loss phase 340 

despite sustained weight loss, compared to baseline. Importantly, AT GDF15 mRNA levels were 341 

significantly reduced at study termination compared to baseline. However, plasma GDF15 remained 342 

steady. This indicates that AT GDF15 upregulation is induced by a negative energy balance. Also, it 343 

tends to suggest that this is linked to AT remodeling during LCD, and that upon the acute weight loss 344 

phase, the metabolic improvements (both in term of weight loss and insulin sensitivity) relates to 345 
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generally higher GDF15 levels. It is to be noticed that GDF15 induces lipolysis as recently reported 346 

(32). 347 

The identification of GDF15 as a factor released by the AT led to the observation that this adipokine 348 

is produced by both adipocytes and stromal cells, with higher GDF15 expression in subcutaneous 349 

than visceral AT and expression negatively associated with body fat mass in both fat depots (51). In 350 

human AT, GDF15 expression was reported as a marker of oxidative stress negatively associated to 351 

lipogenic gene markers (52). In the present study, changes in GDF15 mRNA levels are positively 352 

associated with changes in expression of macrophages markers (CCL3, CD68, LIPA, SPP1) in all 353 

contrasts. We show that GDF15 expression arises from two human AT cell types, preadipocytes and 354 

macrophages, while expression of the four genes (CCL3, CD68, LIPA and SPP1), all co-expressed with 355 

GDF15, only displayed macrophages-specific profiles. Macrophages exhibit phenotypic heterogeneity 356 

and plasticity, depending on their microenvironment. These cells originate from circulating 357 

monocytes and infiltrate tissues where they play various functions including tissue cleanup and 358 

repair. The M1 and M2 classification is an oversimplification of a continuum in activation states, and 359 

individual markers may fail to specify such polarization phenotype (53). M1-like macrophages 360 

promote AT inflammation and insulin resistance; while M2 macrophages have an anti-inflammatory 361 

role (54). We found that GDF15 was more expressed in M2-like macrophages. This is consistent with 362 

a mice study showing that GDF15 expression was previously reported suppressed in M1-like 363 

macrophages (55). GDF15 also enhances the oxidative function of macrophages, leading to 364 

polarization into an M2-like phenotype (55). Interestingly our data show that preadipocytes which 365 

are part of the SVF cells, and not differentiated adipocytes, also express GDF15 at similar level than 366 

macrophages. While preadipocytes GDF15 expression studies remain scarce (52,56), these cells can 367 

be reprogrammed through dietary-induced weight loss and contribute to improvement of the 368 

metabolic syndrome (57). Further studies are needed to elucidate the potential contribution of 369 

preadipocytes to weight loss and related metabolic dysfunction improvements through GDF15 370 

expression. 371 
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We also report different expression profiles of the macrophage markers associated to GDF15. SPP1 372 

and CCL3 expression levels were higher in M1-like macrophages. Osteopontin, encoded by SPP1, is 373 

an important component of immune response and inflammation (58). SPP1 expression is positively 374 

associated to AT macrophages accumulation (59), and osteopontin plays a role in the development of 375 

insulin resistance (60). CCL3 encodes MIP-1α, a member of the CC chemokine family that is produced 376 

by a variety of cells, including resident and recruited macrophages (61). Conversely, LIPA and CD68 377 

expression levels were higher in M2-like macrophages. LIPA, encodes the lysosomal acid lipase 378 

protein that breaks down cholesteryl esters and triglycerides in human macrophages. Its expression 379 

and activity have been reported to be decreased in the metabolic syndrome (62). CD68 encodes a 380 

membrane protein marker and in our analyses, we observed its expression in both M1 and M2 381 

macrophages (with slightly higher levels in the latter population). This is consistent with previous 382 

reports on CD68, that document it as a general marker of macrophages, whose expression is directly 383 

linked with the number of macrophages, and that associates with both pro- and anti-inflammatory 384 

markers (63).  385 

In obese individuals, weight loss induces a decrease in pro-inflammatory and an increase in anti-386 

inflammatory factors (64). The up-regulation of these five genes during LCD may be a hallmark of the 387 

beneficial effect of calorie restriction-induced weight loss on AT inflammation. Lending support to 388 

this hypothesis, a recent study showed that treatment of obese mice with GDF15 improves the 389 

oxidative function of AT macrophages and reverses insulin resistance (55). As no significant change in 390 

circulating GDF15 was found, the present study indicates a paracrine/autocrine role of GDF15 within 391 

AT. The study cannot provide evidence on whether the enhanced GDF15 expression during LCD 392 

originates from preadipocytes or macrophages, however, a strong co-regulation of both M1 and M2 393 

macrophages markers was found. GDF15 appears as an anti-inflammatory marker. In addition to the 394 

decrease in the anti-lipolytic insulin, the pro-lipolytic GDF15 locally produced within AT may 395 

contribute to LCD-induced weight loss (32). The fatty acids produced by adipocytes could thereby 396 

induce transient local inflammation.  397 
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In summary, we identified an AT signature as a cluster of macrophage-related genes, through a 398 

transcriptome-wide systems biology approach. Specifically, a module including GDF15 was identified; 399 

while GDF15 is currently the focus of targeted studies, it demonstrates the validity of our approach 400 

to identify potentially relevant biomarkers of clinical improvements during dietary intervention. And 401 

indeed, our approach highlighted a novel macrophage signature composed of genes co-regulated 402 

with GDF15. 403 
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Legends for Figures  

 

Figure 1: Flowcharts of dietary intervention and expression studies. (A) Flowchart of the DiOGenes 

dietary intervention. (B) Flowchart of the DiOGenes gene expression analyses (path 1: discovery 

analyses with the use of RNAseq; path 2: validation analyses with the use of RT-qPCR). CID, clinical 

investigation day; DiOGenes, Diet, Obesity and Genes; LCD, low-calorie diet; QC, quality control; RT-

qPCR, reverse transcription quantitative polymerase chain reaction; RNAseq, RNA sequencing. 

 

Figure 2: Workflow of the samples, data and network analysis. CID, clinical investigation day; DEG, 

differentially expressed genes; FC, fold change; GMM, Graphical Gaussian Model. 

 

Figure 3: Global network for changes in gene expression and bioclinical parameters during low calorie 

diet. A sparse Graphical Gaussian Model was used to estimate partial correlations in each set of 

variables (changes in adipose tissue mRNA level, and changes in bio-clinical parameters during LCD) 

and mixed models were used to assess links between gene expressions and bio-clinical variables. 

Network was laid out using force-based algorithms in Gephi 0.9.2 software. The bio-clinical variables 

are displayed with high size labels. Edge color indicates the correlation sign: red for positive 

correlations and blue for the negative ones. BMI, body mass index; HDL-Chol, high density 

lipoprotein; LDL-Chol, low density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment 

of insulin resistance. 

 

Figure 4: Adipose tissue gene expression using RT-qPCR at all time-points of the dietary intervention. 

The mRNA levels of CCL3, CD68, LIPA, GDF15 and SPP1 were measured in abdominal subcutaneous 

adipose tissue (n=219-351) at baseline (CID1), after an 8-week low calorie diet (CID2), and after 6 
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months of weight maintenance diet (CID3). CID, clinical investigation day. ***, p <0.001 from 

Friedman and Dunn’s multiple comparison tests. 

 

Figure 5: Adipose tissue gene expression in human adipose tissue cells. The mRNA level of CCL3, 

CD68, LIPA, GDF15 and SPP1 were measured in abdominal subcutaneous adipose tissue freshly 

isolated adipocytes (Adipo), preadipocytes (Preadipo), lymphocytes (Lympho) and macrophages 

(Macro)(n=5). *, p <0.05 ; **, p <0.01; ***, p <0.001  from Kruskal-Wallis and Dunn’s multiple 

comparison vs. adipocytes tests. 

 

Figure 6:  Adipose tissue gene expression in pro- and anti-inflammatory macrophages. The THP-1 cell 

were induced to M0 macrophages, then polarized to M1-like (pro-inflammatory) or M2-like (anti-

inflammatory) phenotype. The mRNA levels of CCL3, CD68, LIPA, GDF15 and SPP1 were measured in 

M0, M1 and M2 macrophages. The data are presented normalized to M0 phenotype (n=11). *, p 

<0.05 ; **, p <0.01; ***, p <0.001; ****, p <0.0001  from Mann-Whitney test.  
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Tables 

 Table 1 Cohort characteristics  

 All (n=416) Women (n=291) Men (n=125) P-value FDR 

Age, y 41.01 +/- 6.35 40.36 +/- 6.39 42.52 +/- 6.01 0.0012 0.0018 

Baseline weight, kg 99.69 +/- 17.14 95.59 +/- 15.75 109.37 +/- 16.44 1.42E-13 7.78E-13 

Baseline BMI, kg/m2 34.76 +/- 4.87 34.83 +/- 4.98 34.59 +/- 4.63 0.6298 0.6298 

Baseline HOMA-IR 2.93 +/- 2.20 2.73 +/- 2.25 3.38 +/- 2.04 0.0056 0.0069 

Baseline total 
cholesterol, mmol/L 

5.02 +/- 0.93 4.93 +/- 0.89 5.23 +/- 0.98 0.0043 0.0059 

Baseline LDL, mmol/L 3.14 +/- 0.83 3.03 +/- 0.78 3.38 +/- 0.87 2.19E-04 4.81E-04 

Baseline HDL, mmol/L 1.28 +/- 0.31 1.33 +/- 0.32 1.15 +/- 0.27 4.00E-08 1.47E-07 

Baseline waist 
circumference, cm 

106.89 +/- 12.75 103.90 +/- 12.19 114.10 +/- 11.13 1.45E-14 1.59E-13 

Percentage of weight 
loss during LCD 

-11.06 +/- 2.74 -10.68 +/- 2.41 -11.90 +/- 3.22 0.0004 0.0008 

Percentage of weight 
loss at study 
termination 

-10.79 +/- 5.97 -10.50 +/- 5.83 -11.59 +/- 6.32 0.2160 0.2376 

 

Number corresponds to mean value +/- standard error. The t-test compares differences between 
men and women. BMI: Body Mass Index, FDR: False Discovery Rate, HOMA-IR: Homeostasis model 
assessment of insulin resistance, LCD: Low caloric diet.  

 

  



 32 

Figures 

 

 

 

Figure 1 

 

 

 

 

 

 

Figure 2 

 

 

  



 33 

Figure 3 

 

 

 

 

 

 

 

 

 



 34 

 

 

Figure 4 

 

 

 

 

 

 

Figure 5 

 

 

 

 

 

 

Figure 6 

 

 

 

 


