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Abstract

Motivation: In metabolomics, the detection of new biomarkers from NMR spectra is a promising
approach. However, this analysis remains difficult due to the lack of a whole workflow that handles spectra
pre-processing, automatic identification and quantification of metabolites and statistical analyses, in a
reproducible way.
Results: We present ASICS, an R package that contains a complete workflow to analyse spectra from
NMR experiments. It contains an automatic approach to identify and quantify metabolites in a complex
mixture spectrum and uses the results of the quantification in untargeted and targeted statistical analyses.
ASICS was shown to improve the precision of quantification in comparison to existing methods on two
independent datasets. In addition, ASICS successfully recovered most metabolites that were found
important to explain a two level condition describing the samples by a manual and expert analysis based
on bucketting. It also found new relevant metabolites involved in metabolic pathways related to risk factors
associated with the condition.
Availability: ASICS is distributed as an R package, available on Bioconductor.
Contact: gaelle.lefort@inra.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Metabolomics is the comprehensive characterization of the small
molecules involved in metabolic chemical reactions. It is a promising
approach in systems biology for phenotype characterization or biomarker
discovery, and it has been applied to many different fields such as
agriculture, biotechnology, microbiology, environment, nutrition or
health. Complementary analytical approaches, such as Nuclear Magnetic
Resonance (NMR) or High-Resolution Mass Spectrometry, can be used
to obtain metabolic profiles. These technologies allow routine detection

of hundreds of metabolites in different biological samples (cell cultures,
organs, biofluids. . . ). But, due to their high complexity and to the large
amount of generated signals, the analysis of such data remains a major
challenge for high-throughput metabolomics.

This article focuses on NMR data, that is a promising tool to
detect interesting biomarkers. The most common approach to deal with
1H NMR spectra is to first divide them into intervals called buckets. The
areas under the curve are computed for every bucket and every spectrum
and these data are given as inputs to statistical methods to provide a list
of buckets of interest (for instance buckets that are significantly different
between two conditions). Since buckets are not directly connected to
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metabolites, this approach requires that 1H NMR experts identify the
metabolites from the extracted buckets. Not only is this identification
step tedious, time consuming, expert dependent and not reproducible but
it also leads to a serious loss of information since the identification of
metabolites is restricted to the ones that correspond to extracted buckets
(Considine et al., 2018).

Some methods have thus been developed to automatically identify
metabolites from 1H NMR spectra (MetaboHunter (Tulpan et al., 2011),
MIDTool (Filntisi et al., 2017)) and others to automatically quantify
the concentration of detected metabolites (Autofit (Weljie et al., 2006),
batman (Hao et al., 2012), Bayesil (Ravanbakhsh et al., 2015) and
rDolphin (Cañueto et al., 2018)); see Bingol (2018) for a complete
review. Recently, Tardivel et al. (2017) defined a new statistical method to
automatically identify and quantify metabolites that outperforms the other
approaches. However, the approach mainly focuses on the quantification
step and needed to be embedded in a complete pre-processing and post-
processing analysis workflow, available through a simple tool. To our
knowledge, such analysis workflows already existed (see a review in
Misra (2018)) but they were usually restricted to some steps of the global
analysis (post-processing, bucketing or statistical analysis). The only
exception seems to be the W4M e-infrastructure (Guitton et al. (2017),
available through the Galaxy platform1), whose automatic identification
and quantification step is based on an earlier version of ASICS but the
environment only allows one-by-one spectrum analysis. Furthermore,
none of the existing workflow is as flexible, easily installed and embedded
with other tools than an R package can be.

The R package ASICS (Automatic Statistical Identification in
Complex Spectra) was designed to fill this gap. The identification and
quantification method is partially based on Tardivel et al. (2017) but has
been strongly revisited and improved to provide a fine tuning of all the
parameters. Changes on the identification step (library distortion) and
on the quantification step (model fitting) have also been implemented to
improve the results and to reduce the computational cost. In addition,
the method, that was only available under the form of separate and
undocumented scripts, is now properly packaged and documented and
the preprocessing of the spectra and post quantification statistical analyses
have been implemented and are now part of the pipeline.

2 Material and methods
ASICS is an R package available on Bioconductor (Gentleman et al.
(2004), http://bioconductor.org/packages/ASICS/) that combines all
the steps of the analysis of 1H NMR spectra (library of pure spectra
management, preprocessing, quantification, post-quantification statistical
analyses). The package also includes functions to directly perform
statistical analyses on buckets and diagnosis tools to assess the quality
of the quantification. All functionalities of the ASICS package are
summarized in Figure 1 and described in the next sections.

2.1 Preprocessing the complex mixture spectrum

After the data are imported from raw 1D Bruker spectral data files or
other types of files, several preprocessing steps are recommended in order
to remove technical biases. Free Induction Decay ou décroissance de
l’induction libre

Baseline correction Most of 1H NMR spectra have baseline distortions
coming from various sources like instrument instability. These distortions
can induce an increase or a decrease in peak intensities and skew the
results of quantification. Wang et al. (2013) developed a method to
estimate the baseline for a spectrum by classifying each point as a signal

1 https://usegalaxy.org/

or a noise point and by using a linear interpolation between noise points to
construct the baseline. Then, the baseline is subtracted from its spectrum.

Peak alignment Due to pH or temperature variations between the
acquisition of multiple spectra, peak positions of the same metabolite can
change between spectra. It is better to align all peaks before analyses,
especially if a binning algorithm is used. Vu et al. (2011) developed
an algorithm, implemented in the R package speaq, to carry out this
alignment. It is based on continuous wavelet transform to detect peaks
and hierarchical clustering to align all spectra on a reference one.

Removal of unwanted regions It is also frequent to exclude a part of the
spectra from the analysis. For instance, the part corresponding to water
(4.5-5.1 ppm) is of no interest for most biological analyses and thus
frequently removed prior to statistical analyses. Urea region (5.5-6.5 ppm)
is also frequently excluded in case of urine samples.

Normalisation A normalisation is mandatory before any analysis to make
samples comparable. It allows to minimise systematic variations due to
differences in sample dilutions. One of the most used methods is the
normalisation to a constant sum (Craig et al. (2006)). As a result, the
total spectral intensity is the same for each spectrum.

In ASICS, all preprocessing steps are available and the normalisation
is the only mandatory one (it is systematically performed when the data
are loaded). In the two following steps of the quantification method
(preprocessing of the reference library, described in Section 2.2, and
quantification itself, described in Section 2.3), all complex mixture
spectra are processed individually and independently from each other.
The method is thus described for only one complex mixture spectrum
(and repeated similarly for all the others).

2.2 Preprocessing the reference library

A library of pure metabolite spectra is used as a reference to identify and
quantify metabolite concentrations in the (complex mixture) spectra of
interest. This library is a set of spectra of pure compounds, that have
been acquired independently from samples. Such a reference library is
available in ASICS. This library is composed of 190 spectra for which
the noise has already been removed (Supplementary Data 1). The spectra
acquisition procedure is detailed in Tardivel et al. (2017). In addition,
ASICS provides functions to add or remove some spectra from the
available reference library or to use another (user provided) reference
library.

In addition to removing noise of each library spectrum, preprocessing
steps are needed to clean and adapt the library to each spectrum of interest.

Noise thresholding As this is the case for each 1H NMR spectrum, all
spectra in library contain noise. All values below a certain threshold, sl,
(that can be defined by the user; default value is sl = 1), are considered
as noise and set to 0. This allows to select peak positions, a step that is
critical for the next selection stage.

First selection step A metabolite can not belong to the complex mixture
if at least one peak of its spectrum does not appear in the complex
mixture spectrum peaks. Using this simple property, a first selection step
is performed. All spectra in the reference library for which the peaks are
not included in the peaks of the complex mixture spectrum are removed.
This step results in a reference library of p pre-selected reference spectra
that are used in the model described in Section 2.3. As technical biases can
yield to chemical shifts, a reference spectrum is selected if all its peaks
are present in the complex mixture spectrum with an allowed shift of M
ppm between the two spectra. In addition, as complex mixture spectra
are noisy, peaks under a threshold sm are ignored for this identification
step. By default, the maximum allowed shift is M = 0.02 ppm and the
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Fig. 1. Schematic representation of ASICS workflow. Bottom box (with brown background): supplementary data (factor corresponding to experimental

conditions for the different spectra) are required for this part of the analysis.

threshold is sm = 0.02. These values have been calibrated on various
real datasets with the help of NMR experts. However, both values can
be changed by the user, depending on his spectrometer and experimental
conditions.

Translation and distortion The alignment algorithm described in
Section 2.1 can not be used to align reference spectra with the complex
mixture spectrum. The reason is that this method is not adapted to spectra
with a low number of peaks as those of the pure metabolite contained in
the reference library. Compared to Tardivel et al. (2017), this step is now
split into two parts: a first step was added to globally shift the spectrum
before a local peak distortion is performed in a second step (Figure 2):

1. First, reference library spectra are aligned with the complex mixture
spectrum of interest by maximizing the Fast Fourier Transform cross-
correlation (Wong et al. (2005)). The algorithm that finds the best
shift (with a maximum allowed shift equal toM ) is taken from the R
package speaq (Vu et al. (2011)).

2. Second, every peak of each library spectrum taken individually
is aligned by a local linear regression centered around each peak
between the spectrum of interest and the reference library spectrum.
To perform local distortions of the chemical shift grid for each peak,
ASICS uses the function φ(x) = ax(1− x) + x, where x ∈ [0, 1],
corresponds to the rescaled initial grid, φ(x) ∈ [0, 1] to the newly
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scaled grid and a ∈
[
−

m
w2−w1

0.52 ,
m

w2−w1
0.52

]
∩ [−1, 1] is a coefficient

of distortion. The definition domain of a is controlled by m, the
maximum allowed shift (with m = M

5 ), and by (w1, w2) that are
the lower and upper bounds of the initial grid, respectively. For each
peak, different values of a are tested within this domain and the one
that minimizes the residuals of the local linear regression is selected
to distort this given peak. This results into a new (distorted) reference
library used in the quantification algorithm.
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2.3 Metabolite quantification

Using the preprocessed complex mixture spectrum and the preprocessed
spectra of the reference library, the metabolite identification and
quantification in the complex mixture spectrum is performed similarly as
in Tardivel et al. (2017). More precisely, the quantification methods does
not use the Lasso (that gives biased estimates) anymore but it has been
replaced by an faster unpenalized estimation followed by the control of
the Family Wise Error Rate (FWER). The complex mixture spectrum is
defined as a linear combination of the library reference spectra: g(t) =∑p

i=1 βifi(Φi(t)) + ε(t), with βi ≥ 0, where g corresponds to the
complex mixture spectrum, fi ◦ Φi to the p pre-selected preprocessed
spectra of the reference library, β = (β1, . . . , βp) to the coefficients
associated with these spectra (or, equivalently, with the corresponding
metabolites) and ε to the noise. The noise is structured so as to take
into account both an additive noise, ε2, and a multiplicative noise, ε1:

ε =
√∑

1≤i≤p
βifi ◦ Φi ε1 + ε2.

A variable selection procedure is implemented to obtain a sparse β by
controlling the Family Wise Error Rate (FWER) with a risk α. Usually,
the threshold for rejecting H0 : βi = 0 is the same for every i. Here,
we used the procedure described in Tardivel (2017) that allows to define
metabolite dependent thresholds in order to maximize the test power.
More precisely, the custom thresholds bi are computed to minimize
the volume of the acceptance region, namely arg min(bi)i

∏p

i=1 bi

subject to PH0 (|β̂1| ≤ b1, . . . , |β̂p| ≤ bp) = 1 − α, where
(β̂i)i=1,...,p are MLE estimates of the previous linear model. The
solution of this optimization problem is obtained by simulating a large
number of realizations of the random variable Z ∼ N (0,Σ), where Σ is
the estimated variance of the estimates (β̂i)i so as to have PH0 (|β̂1| ≤
b1, . . . , |β̂p| ≤ bp) = P(|Z1| ≤ b1, . . . , |Zp| ≤ bp), and the

thresholds (bi) are obtained as the 1− α quantile of the random variable
{|Z1|, . . . , |Zp|}, that allows to control the FWER.

Once the metabolites selected, the quantifications (βi)i for those
selected metabolites are re-estimated by restricting the previous linear
model to this subset in order to limit estimation bias. Finally, the relative
quantifications are obtained by dividing (β̂i)i by the respective number of
protons of each selected metabolite. In ASICS, pure library preprocessing
and quantification are implemented in a unique function that can be run at
once for several spectra with a parallel computing backend.

2.4 Post-quantification statistical analyses

On quantified metabolites (or on a subset of metabolites that are
sufficiently frequently observed in the whole set of complex mixture
spectra), the following analyses can be performed:

Quantification assessment To assess the quality of ASICS quantification,
a plot with the original complex mixture spectrum, g(t), and the
reconstructed spectrum,

∑p

i=1 βifi(Φi(t)), can be obtained for a given
sample (Supplementary Figure ??). In addition, one reference spectrum
for a given metabolite, and its distorted spectrum, can be superimposed
to this plot in order to assess the quality of the metabolite selection for
metabolites of interest.

Exploratory analysis To explore results and detect outliers or batch
effects, Principal Component Analysis (PCA) can be performed.
Individual and variable plots are available to ease the visualisation and
interpretation of PCA results (Supplementary Figure ??).

Discriminant analysis When the samples correspond to two experimental
conditions, Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA, Trygg and Wold (2002)) can be performed to
find the metabolites with the highest discriminant power between these
two conditions with a dedicated function based on the implementation
available in the ropls package (Thévenot et al., 2015). Prediction error
and variable importance in projection (VIP) are computed by a 10-fold
cross-validation procedure, with a stability index for the VIP based on
the results of the folds. Individual and variable plots are also available
(Supplementary Figure ??).

Statistical tests To find differentially quantified metabolites, statistical
tests have also been implemented. Since relative quantifications are
usually non normally distributed, Kruskal-Wallis tests are used to find
differences between the two (or more) groups, in combination with a
correction for multiple testing, as available in the R function p.adjust.
Boxplots showing the differences in metabolite quantification between the
conditions can be displayed (Supplementary Figure ??).

3 Case studies

3.1 Plasma metabolome at the end of gestation in piglets

Genetic selection performed during the last decades has been associated
with an increase in perinatal mortality in domestic pig, Sus scrofa
(Canario et al., 2006, 2007). One main factor related to neonate survival
is the maturation of fetal tissues and organs in late gestation (Voillet et al.,
2014; Yao et al., 2017; Voillet et al., 2018; Gondret et al., 2018). In
order to explore the development of the metabolic status in late gestation,
an experiment was performed on pig fetuses. Metabolomic data were
acquired on plasma samples collected on n = 155 Large White (LW)
fetuses at 90 days of gestation and on n = 128 fetuses at 110 days
of gestation (birth is around 114 days; ANR PORCINET project). All
1H NMR spectra were phased and baseline corrected. Glucose, fructose,
and lactate were directly quantified by standard methods (they have been
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chosen as indicators of carbohydrate metabolism). More details about the
experimental design and data acquisition can be found in Supplementary
Section ??.

Similar analyses were performed on buckets and on relative
quantifications computed with ASICS to assess the performance of the
method. The aim of these analyses was to find metabolites best explaining
the differences between the two groups: fetuses at 90 and 110 days
of gestation. Lists of metabolites obtained with both approaches were
compared as well as the direction of change between groups, based on
two OPLS-DA, one on buckets and the other on quantifications obtained
with ASICS. VIP thresholds for both OPLS-DA were set to 1.

Metabolites that were quantified were used to make a quantitative
assessment of ASICS by comparing the obtained (estimated)
quantifications with the dosages. Pearson correlation between
quantifications and dosages were computed for every metabolite
directly measured by dosage. These correlations were also compared
with the correlations obtained for other quantification methods: Autofit,
batman, Bayesil and rDolphin. Contrary to ASICS, these methods were
too slow or not automated to allow the quantification for the 283 spectra.
Therefore, quantifications were performed on a subsample of the original
dataset that corresponded to the deciles of the lactate, fructose and
glucose dosage to ensure representativity (32 spectra). Computational
times were also recorded. For ASICS quantifications, water and urea
regions were excluded and the maximum shift, M , was set to 0.01. In
order to perform all quantifications with batman in a reasonable time,
its library was reduced to the 160 common metabolites between batman
and ASICS reference libraries and the number of iterations was set to
10,000.

3.2 Urinary metabolome of Type 2 diabetes mellitus

In order to test our method on data acquired with another spectrometer
than the one on which the pure metabolite library included in ASICS
has been obtained, we used the public datasets from Salek et al. (2007).
The experiment has been designed to improve the understanding of
early stage of type 2 diabetes mellitus (T2DM) development. 1H NMR
human metabolome was obtained from 84 healthy volunteers and 50
T2DM patients. Raw 1D Bruker spectral data files were found in the
MetaboLights database (Haug et al. (2013); study MTBLS1). In the
original study, spectra were normalized by the area under the curve
after excluding water (4.24–5.04 ppm), urea (5.04–6.00 ppm) and
glucose (3.19–3.99 ppm, 5.21–5.27 ppm) regions. Finally, a bucketing
was performed with a 0.04-ppm width. The original study used a
combination of PLS-DA and statistical tests (t-test, F -test, Kruskal-
Wallis test and Kolmogorov-Smirnov test) on buckets (with a manual
expert identification) to find differences between the healthy and ill
individuals. This dataset allowed us to test the performance of ASICS
on a different fluid (urine) in a different species (human).

Contrary to Salek et al. (2007), we kept glucose region for a
quantification with ASICS because the glucose spectrum was available
in the library. However, regions of water and urea were excluded. The
other parameters of the different methods were set to their default values
except for ASICS threshold that was set to sm = 0.05, because we
had observed that this dataset was noisier than the previous one. In
addition, to control differences that could originate from the analysis
method itself, we performed the comparison between the buckets and the
ASICS quantifications with the same method, OPLS-DA, as for the study
about perinatal survival (VIP thresholds set to 1.2).

4 Results and discussion

4.1 Comparison with biochemical dosages on piglets

Correlations between quantifications and biochemical dosages of the three
metabolites were performed on the 32 selected spectra. We were not able
to obtain quantifications with Bayesil because no chemical shift reference
(TSP) has been added during spectrum acquisition. Bayesil handles
spectrum from raw NMR induction-decay signal and so it requires that
spectra are collected with TSP added to the sample (Ravanbakhsh et al.,
2015; Beirnaert et al., 2018), TSP is sometimes used as an internal
reference in samples for NMR. This procedure is not advised for plasma
metabolome, and thus not routinely applied, since TSP binds to plasma
proteins (Beckonert et al., 2007).

Table 1 provides the correlations between the quantified target
metabolites and their corresponding dosages for the different
quantification methods. In addition, the table includes the correlation
between one bucket of the target metabolite and the corresponding
dosage as a reference value. These results show that ASICS outperforms
Autofit, batman and rDolphin for the three metabolites and provides
quantification whose correlations are identical to the ones obtained with a
direct comparison to the buckets. Results obtained with batman and the
library with 160 metabolites are consistent with findings of other studies:
the method is not suited for untargeted approaches (Tardivel et al., 2017;
Beirnaert et al., 2018). If the quantification with batman is performed
including only the three targeted metabolites in the reference library,
correlations become similar to the ones obtained by the other methods,
but are still lower than those obtained by ASICS with no prior selection
of the reference library.

On a practical point of view, ASICS has other interesting features:
first, it provides an easy way to handle (complement, replace, manipulate)
the reference library whereas batman and rDolphin need that
information on each multiplet (chemical shift position, multiplicity. . . ) is
specified. A biochemical expertise is thus required for the modification of
the reference library in these packages. Autofit is a commercial software
that requires the acquisition of a license, which strongly limits its use.
Finally, the reference library cannot be modified in Bayesil and this
method is only available through a web interface that makes automation
of several spectra processing impossible.

In terms of computational times, the preprocessing of the library
and the metabolite quantification with ASICS takes about 1’30 min per
spectrum and can be launched at once in parallel. A parallel environment
is also available for batman but the quantification of a single spectra
takes approximately 2 days because of the use of a Bayesian framework
that requires extensive MCMC simulations. Computational time needed
by rDolphin is approximately the same than for ASICS but parallel
implementation is not proposed in the package. Only Autofit has a lower
computation time than ASICS (less than one minute) but spectra can only
be quantified sequentially (no parallel environment).

A table summarizing capabilities of each method is available in
Supplementary Table ??.

4.2 Differences between gestational ages of fetuses

For the study about fetuses in late gestation, two outliers were detected on
the bucket dataset in a preliminary study (Supplementary Figure ??) and
were removed from the analysis (Supplementary Figures ?? and ??).

OPLS-DA was performed on quantified metabolites and on buckets.
Both showed the same predicting power: all samples were perfectly
separated according to their stages of gestation. For the bucket analysis,
VIP values identified 268 buckets on 781 that were found influential
to separate the two groups. Based on this list, a manual identification
performed by an NMR expert hightlighted 21 metabolites.
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Table 1. Correlation between biochemical dosages of three metabolites and relative quantifications obtained with four methods and the
buckets. Bucket for lactate: 1.335; bucket for fructose: 3.995; bucket for glucose: 5.235. Computational time is given for one spectrum.

Lactate Fructose Glucose
Computational

time
Parallel

environment
ASICS 0.93 0.95 0.90 ∼ 1’30 min Yes
Autofit 0.52 0.74 0.75 < 1min No
batman (with 160 metabolites) 0.46 0.56 0.22 ∼ 2 days Yes
batman (with 3 metabolites) 0.55 0.70 0.82 ∼ 45 min Yes
rDolphin 0.82 Not available 0.77 ∼ 1’30 min No
Buckets 0.93 0.95 0.90 2 s Yes

The same analysis was performed on the ASICS quantifications and
allowed to obtain 22 metabolites. The results obtained by ASICS and
buckets analysis are detailed in Supplementary Table ??. Nine metabolites
were found common to both analyses (Supplementary Figure ??): lactate,
creatinine, fructose, glucose, threonine, valine, alanine, proline and
leucine. For the metabolites which were not identified by both approaches,
we observed five cases:

• metabolites only identified on buckets because the pure spectra was
not present in the ASICS reference library: the 3-methyl-2-oxovaleric
acid and the lipids;

• metabolites that were identified by ASICS but not selected as
influential whereas the buckets corresponding to their peaks were: the
betaine and the glutamic acid. Those metabolites indeed exhibited
differences between the two groups (that were found significant by
a Kruskal-Wallis test) but OPLS-DA did not select them as the most
influential. This might be due to the fact that a fixed threshold of
VIP equal to 1 is not be equivalent in the two approaches (ASICS
quantification and direct bucket analysis). Also, dimension reduction
performed with the quantification could have led to a modification of
the correlation structure that determines which variables are the most
influential in the OPLS-DA model;

• metabolites with low intensity peaks because ASICS was not able
to identify and quantify smaller quantities: citrate, tyrosine, lysine,
creatine and isoleucine;

• metabolites that were found by ASICS and not by the bucket analysis
but for which all peaks corresponded to buckets that were found
influential in the bucket analysis: the glycine and the guanidinoacetic
acid. For this case, it is very likely that the non identification of these
metabolites comes from an expertise bias (peaks are confused with
glucose and fructose thus the expert does not identify it);

• metabolites for which no clear conclusion could be driven on their
presence without expert knowledge in NMR or biology or the help of
other technologies like 2D NMR spectrometry. For ASICS analysis
these metabolites correspond to metabolites whose spectra have peaks
only in the region with a high density of peaks (3.5 to 4.2 ppm;
threonic acid, xylitol, sorbitol, galactitol, glucolic acid and arabitol),
with a low concentration (N-acetylglycine, acetamidomethylcysteine,
arginine and isovaleric acid) or with peaks confused with glucose
peaks (glucose-6-phosphate).

The metabolites found by ASICS are consistent with known
biological processes of late gestation in pig, especially with the fetal
two-fold increase of weight during the last three weeks. It is expected
to find up-regulation of the protein synthesis in late gestation, which is
illustrated by the increase of amino acid abundances (alanine, proline,
threonine, arginine, leucine, valine) just before birth. Also, functional
analysis performed with IPA (see Supplementary Figure ??) highlighted
13 metabolites (among the 22 identified by ASICS) involved in common
metabolic pathways directly related to late stage gestation (survival or

organism, metabolism of protein, conversion of lipid). Among these
metabolites, 6 (guanidinoacetic acid, sorbitol, glucose-6-phosphate,
glycine, gluconic acid and arginine) were identified only by ASICS and
not with the bucket approach. In this study, the only weakness of ASICS is
thus a tendency to miss low concentrated metabolites, especially if those
have peaks only in the region with a high density of peaks.

4.3 Differences for T2DM patients

Results for the T2DM study are provided in Supplementary Table ?? and
in Supplementary Figure ??. The same conclusions than in Section 4.2
can be driven: some metabolites were extracted by both analyses
(creatinine, betaine, hippuric acid, guanidinoacetic acid, alanine, glucose,
indoxylsulfate, acetoacetate and trigonelline), some did not have a
pure spectra available in the library (phenylacetylglycine and 2PY) and
the ASICS algorithm had difficulties to identify metabolites with low
concentrations (3-hydroxybutyrate, isoleucine, 2-oxoisovalerate, fumaric
acid and butyrate) or with only one proton (allantoin).

In addition, results were compared with those previously obtained
by Salek et al. (2007) with the same NMR data and with those of an
independent experiment realized on urine samples (among other samples)
from T2DM patients with another non targeted metabolomic technology
Yousri et al. (2015) (results also given in Supplementary Table ??).
Those comparisons highlighted the relevance of ASICS quantification
that showed results consistent with previous studies and prior knowledge
on Type 2 diabete: some of the metabolites were extracted by ASICS
and by bucket quantification, like alanine or acetoacetate (Supplementary
Table ??), and have also been identified in Salek et al. (2007). We were
also able to extract other metabolites, like the glucose (D-Glucose), the
guanidinoacetic acid or the glycerol, that were not previously described
because the glucose region was excluded from the study in Salek et al.
(2007). The glycerol was identified both by ASICS and by Salek et al.
(2007) in experiments on rats and mice (the glucose region was only
excluded in the human dataset and not in the rat and mouse datasets).
In all experiments, the glycerol increased in diabetics, which might
reflect changes in fatty acids metabolism. With ASICS, the creatinine
and its precursor, the guanidinoacetic acid (both also found with buckets),
were directly quantified in urine and only the creatinine was previously
described in (Salek et al., 2007; Yousri et al., 2015) as down regulated
in T2DM. Both these metabolites reflect possible impairment of the renal
function in diabetics.

In addition, three metabolites (acetoacetate, acetone and 3-
hydroxybutyrate) reflected the presence of ketone bodies in urine when
complications for diabete are likely to occur (Misra and Oliver, 2015).
3-hydroxybutyrate and acetoacetate are detected by Salek et al. (2007)
and Yousri et al. (2015) together with buckets and ASICS. Acetone
is only identified as discriminant by ASICS allowing the possibility to
reflect the risk of acidocetose in diabetics. Another metabolite rarely
identified in T2DM, arabitol (L-Arabitol), was quantified as decreasing
only with ASICS and firstly described by Yousri et al. (2015) in urine
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of patients. Together with glucose-6-phosphate, also only identified
with ASICS, these metabolites reflect the pentose pathway activity in
diabetics. Metabolites associated to this pathway were also previously
identified in urine as strongly associated with T2DM development in a
diabetic rat model (Sun et al., 2014). Finally, only ASICS allowed the
identification of GABA (γ-aminobutyric acid), a neuromediator recently
identified to be increased in T2DM and related to a lower cognitive
functioning observed in some diabetic patients (Van Bussel et al., 2016).

In conclusion, not only was ASICS able to automatically recover
the main findings of the bucket and expert analysis, it was also able
to extract a number of metabolites that are relevant and confirmed by
other independent studies but not found by the bucket and expert analysis
(glycerol, guanidinoacetic acid, acetone, arabitol, glucose-6-phosphate
and GABA). This untargeted approach allowed to highlight several
metabolic pathways linked to Type 2 Diabete Mellitus, as illustrated in
Supplementary Figure ??.

5 Conclusion
This article presents an R package, ASICS, integrating a complete
analysis workflow of 1H NMR spectra. This pipeline integrates an
automatic metabolite identification and quantification method based on
a reference library of pure metabolite spectra. ASICS showed better
quantification results than existing methods and allowed to perform a
complete and reproducible study on several hundreds spectra in only a
few hours. Its use on two real world datasets exhibited similar results than
the standard analysis on buckets followed by expert manual identification
but also allowed to provide new information. For both studies, new
metabolites, not extracted by expert identification, were found by ASICS,
some of them confirmed by previous and independent studies. Obviously,
as is the case for other omics data, in coming to a conclusion on whether
the metabolites were really present in samples, a validation would be
necessary.

Finally, ASICS still has some limitations: the algorithm had
difficulties to identify metabolites with low concentrations or with their
peaks all located in a region with a high density of peaks. Future work
will tackle this aspect, by trying to couple the information from the whole
set of spectra to improve the individual quantification.
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