
Accelerating stochastic kernel SOM

Jérôme Mariette1, Fabrice Rossi2, Madalina Olteanu2 and Nathalie Villa-Vialaneix1

1- MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France

2- SAMM, EA 4543, Université Paris 1, F-75634 Paris, France

Abstract. Analyzing non vectorial data has become a common trend
in a number of real-life applications. Various prototype-based methods
have been extended to answer this need by means of kernalization that
embed data into an (implicit) Euclidean space. One drawback of those
approaches is their complexity, which is commonly of order the square or
the cube of the number of observations. In this paper, we propose an
efficient method to reduce complexity of the stochastic kernel SOM. The
results are illustrated on large datasets and compared to the standard
kernel SOM. The approach has been implemented in the last version of
the R package SOMbrero1.

1 Introduction

In a number of real-life applications, data cannot be described by numerical
variables or cannot be compared in a meaningful way using standard Euclidean
metrics. This is the case, for instance, with graphs, trees, categorical data, ...
A generic way to handle this type of dataset is to use a measure of similarity or
dissimilarity between the data, which can be expertly designed.

Self-organizing maps (SOM) have first been extended to the framework of non
numerical data through the median SOM approach [1, 2]. The method replaces
the standard computation of the prototypes by an approximation in the original
dataset. However, the representation of the prototypes is very restricted and
generates representation issues and therefore poor performances. A different
approach is taken in the relational and kernel versions of SOM [3, 4, 5, 6, 7].
In these versions, the original data are embedded into an (implicit) Euclidean
or pseudo-Euclidean space in which the algorithm is performed using only the
dissimilarity or the kernel. A side effect of this method is that it requires that the
prototypes are expressed as a convex combination of the original data, leading
to a quadratic complexity for the batch and the on-line version of the algorithm
[8]. The induced computation cost is a serious bottleneck to analyze datasets
with more than a few thousands observations.

In the present paper, we propose an efficient method to reduce the complexity
of the stochastic kernel SOM (K-SOM) so that it is linear in the number of obser-
vations. The approach is based on an efficient on-line update of the prototypes,
which only requires to store two matrices. The standard K-SOM algorithm is
briefly described in Section 2 and our proposal for reducing its computational
complexity is discussed in Sections 3 (kernel version) and 4 (adaptation to arbi-
trary dissimilarity datasets). Finally, the approach is illustrated in Section 5.

1https://cran.r-project.org/web/packages/SOMbrero, version 1.2



2 A brief description of the stochastic K-SOM

In the sequel, we consider a set of observations (xi)i=1,...,n taking values in
an arbitrary space X . X is equipped with a kernel K : X × X → R that
provides pairwise similarity between the observations, Kij := K(xi, xj). K is
assumed symmetric and positive which ensures the existence of a unique Hilbert
space, (H, 〈., .〉H), and a unique mapping φ from X into H such that K(x, x′) =
〈φ(x), φ(x′)〉H [9].

In K-SOM [4, 5], the U prototypes (pu)u=1,...,U , representing the units of the
low dimensional grid on which the observations are projected, are expressed as
convex combinations of the images of (xi)i=1,...,n by φ: pu =

∑n
i=1 αuiφ(xi),

with αui ≥ 0 and
∑n
i=1 αui = 1.

In the on-line version of the algorithm, the following two steps are performed
for each iteration t, starting from randomly chosen values α0

ui:

• the assignment step in which an observation xi is picked at random and
affected to its closest prototype, f t(xi) = arg minu=1,...,U ‖φ(xi) − ptu‖2H.
This step is equivalent to f t(xi) = arg minu=1,...,U

∑n
j,j′=1 α

t
ujα

t
uj′Kjj′ −

2
∑n
j=1 α

t
ujKij , for Kij = K(xi, xj);

• the representation step in which the prototypes are updated accord-
ing to a gradient descent-like approach: ∀u = 1, . . . , U , pt+1

u ← ptu +
µ(t)ht(d(f t(xi), u))(φ(xi) − ptu), which is equivalent to αt+1

u ← αtu +
µ(t)ht(d(f t(xi), u))(1i − αtu) for d the distance between units on the grid,
ht a decreasing function such that ht(0) = 1 and limx→+∞ ht(x) = 0, 1i
the n-dimensional vector in which only the entry indexed by i is non zero
and equal to 1 and µ is a positive number. Usually µ(t) and ht are chosen
so as to vanish when t increases.

The complexity of the assignment and representation steps are, respectively,
O(n2U) and O(nU), which leads to a total complexity of O(n2U) for one itera-
tion. To obtain good convergence properties, the algorithm requires a number of
iterations of the order of βn, as shown in [10], yielding a complexity of O(βn3U).
Hence, the K-SOM is not adapted to large datasets and cannot be used to analyze
more than a few thousands observations. [11] have proposed two approximate
versions to overcome this issue, using sparse representations of the prototypes or
DR pre-processing techniques. In the present article, we propose a modification
of the SOM update steps so as to produce a solution which is exactly equivalent
to the original algorithm, but with a reduced computational time.

3 Reducing the complexity of stochastic K-SOM

Using a re-formulation of the assignment step, the computational cost of one it-
eration can be reduced to O(nU). At iteration t, an observation xi is picked
at random within (xi′)i′=1,...,n and the assignment step is written f t(xi) =



arg minu∈1,...,U A
t
u − 2Btui in which At =

(∑n
j,j′=1 α

t
ujα

t
uj′Kjj′

)
u=1,...,U

is a

vector of size U and Bt =
(∑n

j=1 α
t
ujKi′j

)
u=1,...,U, i′=1,...,n

is a (U × n)-matrix.

The updates of At and Bt are performed during the representation step,
which is thus equivalent to ∀u = 1, . . . , U, αt+1

u = (1 − λu(t))αtu + λu(t)1i, in
which λu(t) = µ(t)h(d(f t(xi), u)). This leads to the following updates:

Bt+1
ui′ =

n∑
j=1

αt+1
uj Ki′j = (1− λu(t))Btui′ + λu(t)Ki′i,

and the vector A is modified using the equation given by

At+1
u =

n∑
j,j′=1

αt+1
uj α

t+1
uj′ Kjj′ = (1−λu(t))2Atu+λu(t)2Kii+2λu(t)(1−λu(t))Btui.

Thus, the computational cost of the algorithm can be decomposed into:

• computing A0
u =

∑n
j,j′=1 α

0
ujα

0
uj′Kjj′ and B0

ui′ =
∑n
j=1 α

0
ujKi′j for all

u = 1, . . . , U and all i′ = 1, . . . , n. This step is performed only once and
has a complexity of O(n2) and O(n) for A0 and B0, respectively;

• performing the assignment step which complexity does not depend on n
since the distances are pre-computed and stored;

• the update of At and Bt (representation step), which have respective com-
plexities equal to O(U) and O(nU).

Since the assignment and representation steps are usually performed O(βn)
times, the total complexity of the algorithm is dominated by O(βn2U). This
computational cost is obtained using the additional storage of At and Bt which
requires a memory of O(U) and O(nU), respectively.

4 The case of dissimilarity data

In some cases, the dataset is described by a measure of dissimilarity (δ(xi, xj) =
δij), rather than by a kernel. We will suppose that the dissimilarity is symmetric
(δij = δji), with positive elements (δij ≥ 0) and a null diagonal (δii = 0) but it
might be not Euclidean. In [6, 7] are described relational versions of the SOM
algorithm that are adapted to this case and are based on a pseudo-Euclidean
framework [12]. The principle is fairly similar to the one described in Section 2
except that the assignment step writes:

f t(xi) = arg min
u=1,...,U

 n∑
j=1

αtujδij −
1

2

n∑
j,j′=1

αtujα
t
uj′δjj′


(the representation step is unchanged compared to the kernel version). The
complexity of the method is thus identical to the one of the kernel SOM. In the



case where the dissimilarity is computed from a kernel K by δij = Kii +Kjj −
2Kij , the dissimilarity SOM and the relational SOM are identical.

The adaptation of kernel SOM described in Section 3 has a straightforward

equivalent in the case of the relational SOM: At =
(∑n

j,j′=1 α
t
ujα

t
uj′δjj′

)
u=1,...,U

and Bt =
(∑n

j=1 α
t
ujδi′j

)
u=1,...,U,i′=1,...,n

. The assignment step is thus f t(xi) =

arg minu=1,...,U

(
Btui − 1

2A
t
u

)
and the updates of At and Bt are performed during

the representation step as described in Section 3.

5 Application

In this section, different simulations are performed to compare the standard K-
SOM to the accelerated version described in Sections 3 and 4. To assess the
computational cost of the methods, three large size datasets are used:

• a graph, denoted by “polblogs”, in which the 1,222 nodes are blogs on
US politics (recorded in 2005 by [13]2). The edges in this graph represent
hyper-links between the blogs. For this dataset, the shortest path lengths
between pairs of nodes have been computed and used in the relational
version of this algorithm. This dissimilarity is not Euclidean.

• a DNA barcoding dataset, denoted by “cowrie”, that contains 2,036 sam-
ples issued from the cowries family introduced in [14]. DNA barcoding
data are composed of sequences of nucleotides, i.e., sequences of “A”,
“C”, “G”, “T” letters in high dimension (hundreds or thousands of sites)
allowing to assign biological specimens to a species. Only 1,414 samples
were used (those corresponding to species with very few observations were
removed). The Kimura-2P [15] dissimilarity is computed between pairs of
sequences and used in the relational version of the algorithm. Again, this
dissimilarity is not Euclidean.

• a (standard) numerical dataset, denoted by “wine”, which is related to red
variants of the Portuguese “Vinho Verde” wine [16]3. The dataset contains
4 898 observations of 12 numeric variables based on physicochemical tests,
such as the pH, the sulphates or the residual sugar. The Gaussian kernel
has been computed between any pair of wines: Kij = e−σ‖xi−xj‖2 with σ

equals to the median of
{

1
‖xi−xj‖2

}
i<j

.

Hence, the first two datasets are true relational dataset which requires to use
an adapted version of the SOM algorithm to be processed, whereas the third
one is a numeric dataset, which can be processed in a standard manner with the
original SOM algorithm.

2The graph is available at http://www-personal.umich.edu/~mejn/netdata/polblogs.zip.
3The dataset is available at https://archive.ics.uci.edu/ml/datasets/Wine+Quality.



Table 1: CPU time in seconds of the different versions of the SOM algorithm
(average over 100 maps and standard deviation between parenthesis)

numeric SOM rSOM acc. rSOM

“polblogs” NA 1112.34 (165.86) 36.99 (4.49)

“cowrie” NA 1715.40 (249.60) 42.52 (2.32)

“Wine” 16.40 (2.13) 8527.16 (874.58) 206.32 (38.24)

All simulations have been performed with the R package SOMbrero4 that
contains implementation of the standard numeric SOM and of the relational
version of the algorithm. SOMbrero uses a stochastic learning, as is described
in this article. Version 1.1 has been used to obtain the computational time
provided by the original version of the algorithm and version 1.2 to obtain the
computational time provided by the accelerated version. For a fixed random
seed, the results of both versions (version 1.1 with the standard implementa-
tion and version 1.2 with the accelerated implementation) were always exactly
identical for the dissimilarity versions.

All maps were trained for a 10× 10 grid with respectively 6000 (“polblogs”),
7000 (“cowrie”) and 25000 (“wines”) iterations. All grids were equipped with a
piecewise linear neighborhood with the Euclidean distance between units on the
grid calculated using the unit coordinates in N∗2. Following the same method-
ology, 100 maps were trained using the standard numeric version of the SOM
on “wine”, the only numerical dataset, as a basis for comparison: the compu-
tational cost of the numeric version of the algorithm is O(βn × Up) in which
p � n is the number of variables in the dataset (see [8]). It is thus expected
that this direct approach is still faster than the relational version. Results (in
terms of clustering on the map) are also different between the relational version
and the numeric version but these differences are related to the choice of a good
dissimilarity in a given dataset, which is out of the scope of this paper. We thus
only report computational times here.

Table 1 provides the computational cost in seconds obtained over the 100
maps (mean and standard deviation) for the numeric SOM, the standard rela-
tional or kernel SOM and the accelerated version. NA (not applicable) values in
the numeric SOM column of both “polblogs” and “cowrie” datasets come from
the fact that these datasets are not in the framework of the numeric SOM.

Results show that the accelerated version allows to highly reduce the com-
putational time of the relational or kernel SOM. When comparing the results
obtained on the different datasets, the accelerated version is 30 times faster
than the original approach on “polblogs” and more than 40 times faster on both
“cowrie” and “wine”. Compared to the numerical version, the computational
cost is increased but still comparable.

4https://cran.r-project.org/web/packages/SOMbrero



6 Conclusion

We have proposed an efficient version of the stochastic K-SOM and relation
SOM, with a complexity of O(βn2U). The experiments performed on several
datasets demonstrate that the presented method strongly decreases the overall
computational time. With the introduction of this method, a step is taken to
allow the SOM algorithm to deal with massive non numerical datasets.

References

[1] T. Kohonen and P.J. Somervuo. Self-organizing maps of symbol strings. Neurocomputing,
21:19–30, 1998.

[2] B. Conan-Guez, F. Rossi, and A. El Golli. Fast algorithm and implementation of dissim-
ilarity self-organizing maps. Neural Networks, 19(6-7):855–863, 2006.

[3] T. Graepel, M. Burger, and K. Obermayer. Self-organizing maps: generalizations and
new optimization techniques. Neurocomputing, 21:173–190, 1998.

[4] D. Mac Donald and C. Fyfe. The kernel self organising map. In Proceedings of 4th In-
ternational Conference on knowledge-based intelligence engineering systems and applied
technologies, pages 317–320, 2000.

[5] K.W. Lau, H. Yin, and S. Hubbard. Kernel self-organising maps for classification. Neu-
rocomputing, 69:2033–2040, 2006.

[6] B. Hammer and A. Hasenfuss. Topographic mapping of large dissimilarity data sets.
Neural Computation, 22(9):2229–2284, September 2010.

[7] M. Olteanu and N. Villa-Vialaneix. On-line relational and multiple relational SOM.
Neurocomputing, 147:15–30, 2015.

[8] F. Rossi. How many dissimilarity/kernel self organizing map variants do we need? In
T. Villmann, F.M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing
Maps and Learning Vector Quantization (Proceedings of WSOM 2014), volume 295 of
Advances in Intelligent Systems and Computing, pages 3–23, Mittweida, Germany, 2014.
Springer Verlag, Berlin, Heidelberg.

[9] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950.

[10] M. Olteanu, N. Villa-Vialaneix, and M. Cottrell. On-line relational SOM for dissimilarity
data. In P.A. Estevez, J. Principe, P. Zegers, and G. Barreto, editors, Advances in
Self-Organizing Maps (Proceedings of WSOM 2012), volume 198 of AISC (Advances in
Intelligent Systems and Computing), pages 13–22, Santiago, Chile, 2012. Springer Verlag,
Berlin, Heidelberg.

[11] J. Mariette, M. Olteanu, and N. Villa-Vialaneix. Efficient interpretable variants of online
SOM for large dissimilarity data. Neurocomputing, 225:31–48, 2017.

[12] L. Goldfarb. A unified approach to pattern recognition. Pattern Recognition, 17(5):575–
582, 1984.

[13] L.A. Adamic and N. Glance. The political blogosphere and the 2004 us election: divided
they blog. In Proceedings of the 3rd LINKDD Workshop, pages 36–43, New York, NY,
USA, 2005. ACM Press.

[14] C.P. Meyer and G. Paulay. DNA barcoding: error rates based on comprehensive sampling.
PLoS Biology, 3(12), 11 2005.

[15] M. Kimura. A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular Evolution,
16:111–120, 1980.

[16] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by
data mining from physicochemical properties. Decision Support Systems, 47(4):547–553,
2009.


