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Introduction
Kernel methods have proven to be useful and successful to analyse large-scale multi-omics datasets [Schölkopf et al., 2004].
However, as stated in [Hofmann et al., 2015, Mariette et al., 2017], these methods usually suffer from a lack of interpretabil-
ity as the information of thousands descriptors is summarized in a few similarity measures, that can be strongly influenced
by a large number of irrelevant descriptors.

To address this issue, feature selection is a widely used strategy: it consist in selecting the most promising features
during or prior the analysis. However, most existing methods are proposed in a supervised framework [Tibshirani, 1996,
Robnik-Šikonja and Kononenko, 2003, Lin and Tang, 2006]. In the unsupervised framework, the number of proposals is
much less important, because there is no objective criterion or value on which to tune the quality of a given feature. Proposals
thus aim at preserving at best the similarities between individuals like the SPEC approach [Zhao and Liu, 2007] or at
recovering a latent cluster structure, like MCFS [Cai et al., 2010], NDFS [Li et al., 2012] and UDFS [Yang et al., 2011].

In this communication, we will present a feature selection algorithm that explicitly takes advantage of the kernel
structure in an unsupervised fashion.

Method
In the following, we consider a set of n observations (xi)i=1,...,n, taking values in Rp (xi = (xij)j=1,...,p) and described
by a kernel, K, such that K : Rp × Rp → R is symmetric (∀x,x′ ∈ Rp, K(x,x′) = K(x′,x)) and positive (∀N ∈ N,

∀ (αi)i=1,...,N ⊂ R, ∀ (xi)i=1,...,N ⊂ Rp,
∑N
i,i′=1 αiαi′K(xi,xi′ ) ≥ 0). In the sequel, we will denote Kii′ = K(xi,xi′ )

and K the symmetric definite positive (n× n)-matrix with entries (Kii′ )i,i′=1,...,n. The feature map associated with K is

φ : Rd →H, where H is the unique Hilbert space that verifies

∀x,x′ ∈ Rp, K(x,x′) = 〈φ(x), φ(x′)〉H.

The variable selection problem can be formulated by introducing a vector of p variables w = (wj)j=1,...,p, taking values
in {0, 1}p and such that wj = 1 is equivalent to select variable j. A new kernel matrix, Kw, can be defined from K and w
by:

Kw(xi,xi′ ) := K(w · xi,w · xi′ ),
in which “ · ” is the elementwise multiplication: w ·x := (w1x1, . . . , wpxp)T = Diag(w)x. Kw is the restriction of K to the
d variables selected through the definition of w. This gives a natural way to choose w by searching for values that minimize
the distorsion of the original kernel K, as measure by e.g. the Frobenius norm:

w∗ := argmin
w∈{0,1}p

‖Kw −K‖2F for w such that

p∑
j=1

wj ≤ s

for a given chosen s controlling the sparsity of the solution.
However, when p is large, this problem is hard to solve. To address such problems, [Grandvalet and Canu, 2002] and

[Allen, 2013] described approaches using an `1 penalization that produces a sparse solution. In this paper, we propose to
extend them to the unsupervised setting and call the method UKFS. More precisely, the problem writes:

w∗ := argmin
w∈(R+)p

‖Kw −K‖2F + λ‖w‖1, (1)

in which λ > 0 is a penalization parameter that controls the trade-off between the minimization of the distorsion and the
sparsity of the solution and ‖.‖1 is the `1 norm: ‖z‖1 :=

∑p
j=1 |zj |. We propose an efficient gradient based algorithm to

solve this problem (not detailed in this abstract).

Results and discussion
To compare our approach against state-of-the-art approaches, i.e. lapl, SPEC, MCFS, NDFS and UDFS, two microarray
datasets and a DNA barcoding dataset were analysed on which a ground truth clustering structure is known.

“Carcinom” and “Glioma” datasets respectively contain the expression of 9,182 genes obtained from 174 samples and
4,434 genes from 50 samples. To perform the feature selection on these datasets, UKFS was used with the Gaussian kernel

Kii′ = e−σ
∗‖xi−xi′‖

2
with σ∗ chosen so as to minimize the reproduced inertia in the projection on the first two axes of

the KPCA with kernel K. “Koren” includes the abundance of 973 operational taxonomic units (OTUs) collected from 43
samples. To address the underlying compositional structure of such dataset, standard pre-processing steps, i.e., total sum
scaling normalisation (TSS) and centred log ratio transformation (CLR), were applied before selecting the relevant features
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Figure 1: Comparison of the different approaches performances in terms of ACC (left) and NMI (right) computed from

kernel k-means results using only k selected features. Presented results are obtained on the “Carcinom” dataset.

with SPEC, MCFS, NDFS and UDFS. This pre-processing step is not required by UKFS which computes a kernel

based on the Bray-Curtis dissimilarity between samples on raw abundances, dBC(xi,x
′
i) =

∑p
s=1 |xis−xi′s|∑p
s=1(xis+xi′s)

, with p the

number of OTUs observed.
Methods are evaluated on their ability to recover the dataset underlying classification structure using only a small

number of features that they have selected. The true partition is used as ground truth to compute standard clustering
performance metrics, i.e., the normalized mutual information (NMI, [Danon et al., 2005]) and the overall accuracy (ACC).
Note that our approach is not specifically optimized for this type of problem, contrary to MCFS, NDFS and UDFS which
explicitely have a cluster structure assumption and for which we set C, the a priori number of clusters of the method, to
its true value (C = 11 for “Carcinom”, C = 4 for “Glioma” and C = 3 for “Koren”).

Results demonstrate a high efficiency of our approach to select features relevant to summarize the structure of the data,
in a reasonable computational time and with no a priori on a cluster organization of the data. For the three tested datasets,
UKFS is in the range of or surpasses results obtained with other methods. More precisely, Figure 1 shows that UKFS
selects variables allowing to produce clustering with a quality fairly similar to those obtained by two methods designed for
such purpose, i.e., NDFS and MCFS. This observation is confirmed by the results obtained on the other datasets and
future work will investigate the biological relevance of selected features.
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