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A new approach of gene co-
expression network inference 
reveals significant biological 
processes involved in porcine 
muscle development in late 
gestation
M. Marti-Marimon1, N. Vialaneix2, V. Voillet1, M. Yerle-Bouissou1, Y. Lahbib-Mansais1 & 
L. Liaubet1

The integration of genetic information in the cellular and nuclear environments is crucial for deciphering 
the way in which the genome functions under different physiological conditions. Experimental 
techniques of 3D nuclear mapping, a high-flow approach such as transcriptomic data analyses, and 
statistical methods for the development of co-expressed gene networks, can be combined to develop 
an integrated approach for depicting the regulation of gene expression. Our work focused more 
specifically on the mechanisms involved in the transcriptional regulation of genes expressed in muscle 
during late foetal development in pig. The data generated by a transcriptomic analysis carried out on 
muscle of foetuses from two extreme genetic lines for birth mortality are used to construct networks of 
differentially expressed and co-regulated genes. We developed an innovative co-expression networking 
approach coupling, by means of an iterative process, a new statistical method for graph inference with 
data of gene spatial co-localization (3D DNA FISH) to construct a robust network grouping co-expressed 
genes. This enabled us to highlight relevant biological processes related to foetal muscle maturity and 
to discover unexpected gene associations between IGF2, MYH3 and DLK1/MEG3 in the nuclear space, 
genes that are up-regulated at this stage of muscle development.

Cell type diversity in a given organism cannot be explained only by DNA sequences. Cis- and trans-acting 
regulatory sequences are not the only determinants of gene expression: other epigenetic mechanisms are also 
responsible for tissue-specific expression of genes. Indeed, more recently, numerous studies link the genome 
organization in the nucleus to an additional level of gene expression regulation1–5. It is known that in higher 
eukaryotes, genomes are organized into individual chromosomes that occupy discrete territories in the nucleus6, 
which means that the distribution of the genome is not random. Moreover, interphase chromosome regions often 
loop out of their chromosome territories7, and neighbouring chromosomes can intermingle, resulting in potential 
functional contacts between regions located on different chromosomes2–4,8. There is evidence that long-range 
interactions between genomic regions contribute to gene expression regulation2 and might facilitate the con-
solidation of co-regulated genes in specialized foci of active RNA polymerase II as well as at nuclear speckles 
(pre-mRNA processing)3–5. These insights give us some clues about the contribution of the spatial genome organ-
ization in interphase nuclei to gene expression regulation (for review9).

Microscopy approaches such as 3D fluorescent in situ hybridization (FISH)10,11, enable a global view of what is 
happening at the level of individual cells. Recently, we focused on this last item to study interchromosomal inter-
actions between co-expressed genes belonging to the Imprinted Gene Network (IGN)12. We chose the genomic 
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imprinting model because it can compare, in the same nucleus, the environment of an active allele with an allele 
maintained as repressed due to its imprinted status. We focused our analysis on IGF2 because it is involved in 
pig muscle growth and fat deposition13,14, being therefore a major gene of interest in the context of agronomic 
projects. In humans, IGF2 is well known to be a key element in foetal growth and development15. We highlighted 
associations between the expressed alleles of IGF2 and DLK1/MEG3 locus (DLK1 being related to the control of 
muscle development and regeneration16), in foetal muscle and liver cells17. These results illustrate the implication 
in trans-interactions of genes associated with quantitative trait loci (QTLs) for growth traits, providing new evi-
dence that genome organization could influence gene expression and phenotypic outcome in livestock species.

In this context, we focused on the study of the muscle maturity process (essential for the survival of piglets) to 
better understand how interesting phenotypes are elaborated, by combining transcriptome and co-localization 
data with network modelling. Indeed in pigs, and in general in mammals, one of the most critical period for 
survival is the perinatal period, and an important determinant of early mortality is maturity, defined as the 
stage of full development leading to survival at birth18. Piglet maturity involves biological processes occurring 
between the 90th day and the end of gestation, e.g. glycogen accumulation in muscle and liver, as well as matura-
tion of tissues19,20. The maturity of skeletal muscles plays an important role in piglet survival at birth because of 
its involvement in motor functions and thermoregulation. On this subject, we previously performed a microarray 
analysis of foetal muscle to identify candidate genes for piglet maturity, which revealed genes that were differ-
entially expressed between the 90th and the 110th day of gestation21. Using Pearson correlation a relevance gene 
co-expression network was built from these differentially expressed genes (DEGs) for four gestational ages. The 
network revealed and confirmed that: (i) genes involved in muscle development were up-regulated at the 90th day 
of gestation, (ii) at the 110th day, the enriched biological functions were involved in energy metabolism.

An increasing number of studies use gene co-expression networks to deal with large gene expression datasets 
in order to decipher biological processes22–24. Modelling co-expression with network models is useful for provid-
ing a global overview of the co-expression relationships between genes and enables a set of genes to be analysed 
globally with specific network tools. This approach has been found relevant for extracting biological information 
such as important genes with respect to their centrality in the network structure25, densely connected groups of 
genes26 or frequent motifs27.

For the study described in this article, we developed a new method for the construction of a co-expression 
gene network with genes involved in the foetal muscle maturation process, using an original approach coupling 
a statistical model and observed data in an iterative process to further our understanding of the mechanisms 
involved in muscle development. More precisely, we combined gene expression data and gene spatial co-location, 
thus creating a new statistical method for graph inference. Our approach is based on Gaussian Graphical Models 
(GGMs28) that enable the computation of partial correlations and fit direct relations better than Pearson-based 
correlation networks. Such networks have been found to be more efficient for grouping genes with a common 
function29. This enabled us to obtain more reliable networks in which connections between genes were validated 
iteratively using biological evidence. In practical terms, we performed 3D DNA FISH experiments to test pairwise 
whether co-expressed genes (connected in the network) were co-localized in the 3D nuclear space.

The study enabled us to obtain a robust gene co-expression network that highlights significant Gene Ontology 
(GO) terms associated with biological processes related to foetal muscle maturity. In addition, unexpected asso-
ciations were identified between MYH3 and the imprinted loci IGF2 and DLK1, which might help elucidate the 
mechanisms involved in the porcine muscle development process at the end of gestation.

Results
Data selection. The 44,368 probes from the expression dataset of the muscle transcriptome study from 
Voillet et al.21 were found to correspond to 13,855 unique annotated genes, among which 1,131 unique genes were 
found to be differentially expressed between the two gestational ages and for the four genotypes characterizing 
the establishment of piglet maturity. Among them, 359 DEGs (Supplementary Table S1) were selected for being 
highly correlated with IGF2, DLK1 and MEG3 (R² ≥ 0.84), also identified as DEG, and were used in all subsequent 
network inferences (see further details in “Materials and Methods”, the section on “Microarray data description 
and pre-processing”).

Network inference iteration and 3D FISH validations. The whole process involving the data selection, 
the network inference and the 3D FISH validations is summarized in Fig. 1. Network 0 was inferred with no a 
priori knowledge and contained 2,279 edges for 359 nodes (density: 3.55%). A sub-network extracted around the 
three target genes is shown in Fig. 2a.

Network 1 was built based on the triple co-localization of IGF2, DLK1 and MEG3 found in our previous 
study17. This a priori information was used to reinforce the existence of an edge between the pairs IGF2-DLK1, 
IGF2-MEG3 and DLK1-MEG3 in Network 1 (sub-network in Fig. 2b), which contained 2,250 edges (density: 
3.50%). In both graphs (Network 0 without a priori and Network 1 with a priori), we found a direct connection 
between the genes IGF2 and RPL32. The IGF2-RPL32 association was thus tested by 3D DNA FISH, because it 
involved one of our 3 initial target genes (IGF2, DLK1 and MEG3), and because it was also found in the IGN of 
Varrault et al.12. The 3D DNA FISH assay revealed that IGF2 and RPL32 were associated in 20% of the analysed 
nuclei (Table 1, Fig. 3a).

Additionally, we used 3D DNA FISH to analyse MEST and DCN associations with each of the three target 
genes, because they were also connected in the IGN (Table 1 and Fig. 3b–e).

This new information about spatial co-localization in the nucleus was entered in our model as an a pri-
ori to build Network 2 (with 2,091 edges and 3.25% of density) (sub-network in Fig. 2c). Specifically, in addi-
tion to the three pairs IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 given as associated in Network 1, we gave 
the following pairs of genes as known to be co-localized: IGF2-MEST (34% of analysed nuclei presenting an 
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association), (DLK1/MEG3)-MEST (in 34% of analysed nuclei), (DLK1/MEG3)-DCN (in 15% of analysed nuclei) 
and RPL32-IGF2 (in 20% of analysed nuclei). The pair IGF2-DCN was given as not co-localized (with 10% of 
nuclei presenting an association) (Table 1, Fig. 3b–e). DLK1 and MEG3 are two imprinted genes located in the 
same cluster, and are both present in the same Bacterial Artificial Chromosome (BAC) used for the 3D DNA FISH 
experiments, because of their proximity on the genomic sequence (Supplementary Table S2). Consequently, we 
considered DLK1/MEG3 as a simple locus for all 3D DNA FISH analyses, even though they are considered to be 
single genes for network inference.

To obtain the last network (Network 3), we used 3D DNA FISH to test for associations involving MYH3 
because it was found to be connected to DLK1 and MEG3 in Network 0 and to DLK1 in Network 1. We found 
MYH3 associated with (i) IGF2 in 52% of the analysed nuclei, (ii) DLK1/MEG3 in 45% of the analysed nuclei, and 
(iii) MEST in 26% of the analysed nuclei (Table 1, Fig. 3f–h). Thus, in addition to the a priori information given 
in Networks 1 and 2, we gave the following new associations (IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and 
MEST-MYH3) to infer Network 3 (2,091 edges, density = 3.25%) (Sub-network in Fig. 2d).

Network mining (network structure with key genes). For each network, two main numerical charac-
teristics (degree and betweenness) were used to detect key genes with respect to the network structure. The degree 
of a node (in this case, of a gene) is the number of edges afferent to this gene. The betweenness of the node (gene) 
is the number of shortest paths between pairs of genes in the network that pass through that gene. High-degree 

Figure 1. Experimental design. Published data are represented in green squares (microarray data and 3D 
DNA FISH data), statistical methods are represented in blue (GGM: Gaussian Graphical Models) and new 
information about spatial localization used for network inference is represented in red.
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genes are connected to many other genes while high-betweenness genes are central and more likely to disconnect 
the network if removed. We analysed the evolution of the betweenness and degree from Network 0 to Network 
3. Supplementary Table S3 shows a subset of 25 genes selected as key genes for the network structure because 
they showed a high betweenness or a high degree value or both a high betweenness and a high degree, or because 
they were among genes whose associations tested positive with 3D DNA FISH. Most of the genes presenting the 
highest betweenness values in Network 0, still kept or increased this numerical characteristic in Network 3 after 
network inference iterations. However, important changes were observed in some genes. For instance, AKR7A2, 
DLK1, EGFR, MEG3, MYH3 and RPL32, showed more than a 40% decrease in betweenness accompanied by a 
decrease in degree (>25%) when Network 3 was obtained. DCN showed a pronounced decrease in its degree 
while its betweenness was slightly modified. Interestingly, MEST and IGF2 were found to have a mixed profile 
of betweenness and degree: in Network 3, we observed a 46% loss for MEST in gene connections, as compared 
to Network 0, while its betweenness increased by 160%. Similarly, a 30% loss of connections and a 426% gain in 
betweenness was observed for IGF2.

Network clustering. To analyse the evolution of the network structure from Network 0 to Network 3, clus-
tering of the genes was performed on each network (for more details, see “Network mining and clustering” in 

Figure 2. Analysis of gene associations. Pink nodes represent target genes, red edges represent the known 
associations observed by 3D DNA FISH and the dotted orange edge represents the observed as not associated 
after 3D FISH validations. Because networks are very dense and contain many genes, a sub-network restricted 
to the target genes and their direct neighbors is extracted from each network, and presented in this figure. 
(a) Network 0 is inferred without a priori information, and restricted to the nodes corresponding to IGF2, 
DLK1 and MEG3 (in yellow). To infer Networks 1, 2 and 3, new a priori information of spatial localization is 
introduced for the following pairs of genes: (b) IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 for Network 1;  
(c) IGF2-MEST, (DLK1/MEG3)-MEST, (DLK1/MEG3)-DCN, RPL32-IGF2, IGF2-DCN for Network 2;  
(d) IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and MEST-MYH3 for Network 3.
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“Materials and Methods” and Supplementary Tables S1 and S4). Four significant clusterings (p-value < 0.002) 
were obtained, one for each network. A total of nine clusters were obtained in Network 0, six in Network 1, eight 
in Network 2 and six in Network 3. Networks 0 and 3 were analysed in depth to search for any correspondence 
between clusters (Supplementary Table S5). Four clusters in Network 0 were found to share at least two thirds of 
their nodes with the corresponding clusters in Network 3. More precisely, 64.1% of the genes in cluster 1, 68.4% 
in cluster 2, 66% in cluster 3 and 82.4% in cluster 4, were observed in the corresponding clusters of Network 3. 
The other clusters in Network 0 (clusters 5, 6, 7, 8 and 9) were mainly spread each into two different clusters of 
Network 3. Additionally, the Normalized Mutual Information (NMI) value was calculated to quantify the similar-
ity between clusterings for pairs of networks (Table 2). Interestingly, we observed that the clustering obtained in 
Network 0 was the most similar to the clustering obtained in Network 1 (NMI = 0.389). Similarly, the clustering 
in Network 1 was the most similar to the one obtained in Network 2 (NMI = 0.401), and the clustering in Network 
2 was the most similar to the one obtained in Network 3 (NMI = 0.401). This finding suggests that clusterings 
become more consistent when introducing new biological information in each network inference iteration.

Functional enrichment analysis. To test the biological relevance of each cluster in Networks 0 and 3, a 
functional enrichment analysis was performed for each cluster from both networks. Significant GO terms for 
Biological Processes (GOBP) were observed in clusters 1 and 2 of Networks 0 and 3, and in clusters 3, 5 and 8 of 
Network 0 (Table 3 and Supplementary Table S6). Table 3 shows the four clusters presenting the non-redundant 
GOBP with the smallest False Discovery Rate (FDR). When comparing cluster 1 in Networks 0 and 3, eight 
common enriched GO terms were observed, mainly involved in extracellular matrix formation, embryonic 
development, metabolic processes and cellular response to stimulus. Besides, fourteen common enriched GOs 
were observed in cluster 2 of Networks 0 and 3. These GO terms were mainly involved in cellular respiration, 
energy metabolism, cellular metabolic processes and metabolism of fatty acids. Additionally, two GO terms were 
observed only in cluster 2 of Network 3, both involved in the mitochondrial respiratory processes. Interestingly, 
the smallest FDR were observed in Network 3: (i) for cluster 1 (containing all genes tested by 3D DNA FISH), 
referring to the “Extracellular structure” term (involving the Decorin gene (DCN); FDR = 1.14e-08); (ii) for clus-
ter 2, referring to the “Generation of precursor metabolites and energy” term (FDR = 1.32e-07) (Table 3).

These results suggest that our approach to network inference by incorporating a priori biological informa-
tion enables us to obtain relevant GO terms while conserving the functional enriched terms found in the initial 
network (Network 0). Moreover, we unexpectedly observed that two (IGF2 and DCN) of our seven target genes 
showed more significant GO terms in Network 3 than in the initial network. Specifically, IGF2 was observed 
to be uniquely involved in the “Genetic imprinting” term in cluster 3 of Network 0 (FDR = 3.82e-02), while in 
cluster 1 of Network 3 it was found to be involved in two new significant GO terms, the one with the smaller FDR 
being “Skeletal system development” (FDR = 3.05e-03) (Table 3 and Supplementary Table S6). DCN was in turn 
observed to be involved in the “Sulphur compound metabolic process” term (FDR = 7.47e-03) in cluster 2 of 
Network 0, while in cluster 1 of Network 3 it appeared to be involved in the “Extracellular structure” term present-
ing the smallest FDR value (1.14e-08) of all clusters. Concerning MEST, MYH3 and DLK1, also tested by 3D DNA 
FISH, even though the observed FDR were higher than 5%, interesting GO terms were observed for these genes 
in cluster 1 of Network 3 (Supplementary Table S6). For instance, MEST was found to be involved in “Mesoderm 
development”, MYH3 in “Body morphogenesis”, DLK1 in “Notch signalling pathway” and DCN and MYH3 were 
both found to be involved in “Muscle organ development”.

Another functional analysis was performed with Ingenuity Pathway Analysis (IPA) specifically on cluster 1 
of Network 3, which contains the target genes (IGF2, DLK1, MEG3, RPL32, MEST, DCN and MYH3). IPA pro-
posed to connecting 49 (82%) out of 60 genes in a network including all target genes except MEG3 and MYH3. 
MYH3 was found in a small network with 8 out of 60 genes, and MEG3 in another small network of only 1 out 
of 60 genes. Furthermore, MYOD1 and CTNNB1 were identified by upstream regulator analysis as potential 
transcriptional factors for a group of genes including IGF2 and MYH3. As IPA offers the possibility of merging 
networks (if there are links between nodes in the Ingenuity Pathways Knowledge Base), a reconstructed network 

Gene associations
Number of 
nuclei analysed

Percentage of nuclei with signals

Distant 
(d > 1 µm)

Close (0, 
5 < d ≤ 1 µm)

Co-localized 
(d < 0.5 µm)

Associated 
(d ≤ 1 µm)

MEST* - IGF2* 100 66 32 2 34

MEST* - (DLK1-MEG3)* 90 66 28 6 34

DCN - (DLK1-MEG3)* 73 85 15 0 15

RPL32 - IGF2* 80 80 16 4 20

DCN - IGF2* 98 90 7 3 10

IGF2* - MYH3 58 48 43 9 52

(DLK1-MEG3)* - MYH3 69 55 38 7 45

MEST* - MYH3 103 74 23 3 26

ZAR1 - IGF2* 61 92 8 0 8

ZAR1 - PRLR 63 92 8 0 8

Table 1. Association percentages of tested gene pairs. Associated signals (close + co-localized) are considered 
as those separated by a 3D distance (d) ≤ 1 µm, and are divided into two different classes: “close” signals 
(0.5 < d ≤ 1 µm), and “co localized” signals (d ≤ 0.5 µm). *Genes imprinted in pig.
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was obtained (Fig. 4), and analysed around the target genes. Fourteen genes, among them 7 genes from cluster 1 
(including DCN and IGF2), were observed to be related to “Cell Morphology” (p-value = 1.75e-08). DCN, DLK1 
and IGF2 were likewise involved in the “Quantity of cells” function with 31 genes, including 16 genes from cluster 
1 (p-value = 2.48e-09).

“Morphology of connective tissue cells” with 8 genes (p-value = 1.27e-04) included DLK1 and MEST. 
“Formation of muscle”, with 10 genes (p-value = 2.98e-05), involved IGF2 and MYH3 together with the two tran-
scription factors CTNNB1 and MYOD1 (Supplementary Table S8).

Discussion
We present here a new approach based on GGM that enables the user to introduce previously acquired bio-
logical knowledge to build gene co-expression networks. Since an observed correlation between two genes in 
the co-expressed gene network does not necessarily mean that these genes are related to a common biological 
process, we used information of gene nuclear co-localizations to reinforce observed links in the co-expressed 
gene network. Some studies have shown examples of co-expressed and co-localized genes being implicated in a 
particular process, e.g. the Hbb and Hba Klf1-regulated globin genes were found to be co-localized in special-
ized Klf1-enriched transcription factories of erythroid cells3. Others have observed a role of co-expressed and 
co-localized genes in gene expression regulation, e.g. in the HUVECs endothelial cell line, SAMD4A, TNFAIP2 
and SLC6A5 TNFα-induced genes were hierarchically transcribed when engaged in chromosomal interactions30.

In order to determine which pairs of genes would present a reinforced edge in the networks, we performed 
two negative controls (see “gene-gene associations” in the “Materials and Methods” section). As discussed in 
our previous study17, it can be difficult to define a suitable non-associating control. Sandhu et al. established a 
threshold of 2%31, while others used the expected frequency of random co-localization based on the volume of the 
nucleus and individual gene signals (<1%)5. This estimation of random co-localization does not take into account 
other constraints such as: (1) chromosomes occupy specific territories4,6; (2) transcriptionally silent domains 
reside at the nuclear periphery32; (3) chromatin regions are preferentially associated in topological domains 
(TADs)33. Fixing an arbitrary threshold of 10% was a more restrictive way of analysing co-expressed genes that 
might tend to interact preferentially. Consequently, the pair IGF2-DCN was given as not co-localized by enforcing 
the absence of an edge between both genes.

Figure 3. Analysis of gene associations by DNA FISH. Extended focus of 3D image sections from confocal 
microscopy and overlay of the 3 channels (blue, red and green) were obtained with Volocity v6.0 software 
(Perkin Elmer). The four signals in the nuclei correspond to the two alleles of each gene. Nuclei are 
counterstained with DAPI (blue). In all experiments, the percentage of association between genes was higher 
than 10% except for (e). Scale = 1.7 µm.

Network 0 Network 1 Network 2 Network 3

Network 0 1 0.3893 0.3381 0.3244

Network 1 0.3893 1 0.4007 0.3923

Network 2 0.3381 0.4007 1 0.4152

Network 3 0.3244 0.3923 0.4152 1

Table 2. Normalized mutual information (NMI) between pairs of clusterings. NMI measure the similarity 
between two clusterings. The value is comprised between 0 and 1 and is equal to 1 when the two clusterings are 
identical.
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Testing the nuclear co-localization of IGF2 and RPL32 by 3D DNA FISH proved interesting, as this connection 
concerned an imprinted gene (IGF2, involved in muscle growth-related traits14) and a ribosomal protein coding 
gene RPL3234. This experiment revealed that these genes are associated. Additionally, it was interesting to find 
co-localized pairs of genes such as IGF2-MEST, (DLK1/MEG3)-MEST, (DLK1/MEG3)-DCN, that were observed 

GO ID GOBP Terms

Network 0 - Cluster 1 Network 3 - Cluster 1

Genes FDR Genes FDR

43062 Extracellular structure
POSTN, COL1A1, COL1A2, 
COL3A1, COL5A1, 
COL16A1, LAMA4, MFAP5

5,76E-05
POSTN, COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2, COL16A1, 
DCN, FAP, FBN1, ABI3BP, ANXA2, 
LAMA4

1,14E-08

71417 Cellular response to 
organonitrogen compound

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, FYN, 
KLF3, ZFP36L1, HSP90B1

6,80E-04
COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, FBN1, 
IGF2, HSP90B1

1,16E-02

45995 Regulation of embryonic 
development

COL5A1, COL5A2, FGFR1, 
LAMA4, LFNG 2,24E-03 COL5A1, COL5A2, FGFR1, LAMA4, 

LFNG 1,16E-02

71559 Reponse to transforming growth 
factor beta

POSTN, COL1A1, COL1A2, 
COL3A1, FYN, ZFP36L1 2,35E-03 POSTN, COL1A1, COL1A2,COL3A1, 

FBN1 1,24E-01

44236 Multicellular organism metabolic 
process

COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2 2,35E-03 COL1A1, COL1A2,COL3A1, 

COL5A1, COL5A2, FAP 3,05E-03

43588 Skin development COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2, ZFP36L1 3,18E-03 COL1A1, COL1A2, COL3A1, 

COL5A1, COL5A2 1,44E-01

1101 Reponse to acid chemical COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, NFATC4 1,17E-02

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, 
NFATC4

2,27E-02

1501 Skeletal system development
POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FGFR1, 
TMEM119

1,43E-02
POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FBN1, FGFR1, 
ANXA2, TMEM119, IGF2

3,05E-03

Network 0 - Cluster 2 Network 3 - Cluster 2

72350 Tricarboxylic acid metabolic 
process

CS, DLAT, DLD, NNT, 
MDH1, PDHA1 3,02E-06 CS, DLAT, DLD, NNT, MDH1, 

PDHA1 2,11E-05

51186 Cofactor metabolic process
COQ7, DLAT, DLD, NNT, 
HK1, ACACB, NMNAT3, 
ACAT1, MDH1, PDHA1, 
PDHX

2,97E-05
DLAT, DLD, IBA57, NNT, GPI, 
ACACB, NMNAT3, MDH1, PDHA1, 
FLAD1, MCEE

1,34E-03

72524 Pyridine-containig compound 
metabolic process

DLD, NNT, HK1, NMNAT3, 
MDH1, PDHA1, PDHX 1,00E-04 DLD, NNT, GPI, NMNAT3, MDH1, 

PDHA1 1,11E-02

6631 Fatty acid metabolic process
CPT1B, ECI1, DLAT, DLD, 
ACACB, ACADS, ACAT1, 
PDHA1, PTGES2, PDHX

1,00E-04
CPT1B, ECI1, DLAT, DLD, 
FABP3, ACACB, ACADS, PDHA1, 
ADIPOR2, PTGES2, MCEE

1,17E-03

6091 Generation of precursor 
metabolites and energy

CS, DLAT, DLD, NNT, HK1, 
MDH1, OXA1L, ATP5B, 
PDHA1, SLC25A3

1,09E-04
CS, DLAT, DLD, NNT, GPI, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, ATP5B, PDHA1, SLC25A3, 
CISD1, NDUFA12, PYGM

1,32E-07

6090 Pyruvate metabolic process DLAT, DLD, HK1, PDHA1, 
PDHX 5,42E-03 DLAT, DLD, GPI, PDHA1, BSG 2,32E-02

6790 Sulfur compound metabolic 
process

VCAN, DCN, DLAT, DLD, 
ACACB, ACAT1, PDHA1, 
PDHX

7,47E-03 DLAT, DLD, IBA57, ACACB, 
PDHA1, MCEE 4,79E-01

42180 Cellular ketone metabolic process COQ7, DLAT, DLD, ACACB, 
PDHA1, PDHX 1,46E-02 DLAT, DLD, FABP3, GPI, ACACB, 

PDHA1 8,05E-02

45454 Cell redox homeostasis TXNRD2, DLD, NNT, 
PTGES2 1,46E-02 TXNRD2, DLD, NNT, PTGES2 4,91E-02

44282 Small molecule catabolic process CPT1B, ECI1, DLD, HK1, 
ACACB, ACADS, ACAT1 1,88E-02 CPT1B, ECI1, DLD, GPI, ACACB, 

ACADS, BCAT2, MCEE 4,51E-02

98656 Anion transmembrane transport CLCN5, CPT1B, ACACB, 
SLC25A3, SLC1A3, VDAC1 2,31E-02 CPT1B, ACACB, SLC25A3, SLC1A3, 

VDAC1 3,77E-01

6081 Cellular aldehyde metabolic 
process DLAT, DLD, PDHA1, PDHX 2,59E-02 DLAT, DLD, GPI, PDHA1 8,73E-02

43648 Dicarboxylic acid metabolic 
process

DLD, NMNAT3, MDH1, 
SLC1A3 3,13E-02 DLD, NMNAT3, MDH1, BCAT2, 

SLC1A3 2,13E-02

16042 Lipid catabolic process CPT1B, ECI1, ACACB, 
ACADS, ACAT1, NCEH1 3,65E-02 CPT1B, ECI1, FABP3, ACACB, 

ACADS, NCEH1, MCEE 6,59E-02

10257 NADH dehydrogenase complex 
assembly

NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 3,29E-03

97031 Mitochondrial respiratory chain 
complex I biogenesis

NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 3,29E-03

Table 3. Comparison of GOBP in clusters 1 and 2 between Network 0 and Network 3. GO terms enriched in one 
of the clusters as well as all GO terms associated to one of the three target genes at least (even if not significantly 
enriched). In bold, the smallest FDR value for a given GOBP term when the difference between the FDR of the 
two clusters is higher than one order of magnitude. Genes tested by 3D DNA FISH are in underline bold.
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to be connected in co-expression networks in other studies12,23, even though they were not directly connected by 
an edge in our network (Network 1) but via intermediary genes. Besides, surprising results showed the highest 
association we have ever observed between two genes (neither in the present study, nor in previous ones). This 
association concerns MYH3 and IGF2. MYH3 plays an important role in foetal muscle development35,36, and 
encodes for the embryonic Myosin Heavy Chain (MYHC) 3 protein. To the best of our knowledge, no previous 
association between these two genes, whatever its origin (nuclear or functional), has ever been observed, even 
though the two genes are known to be involved in muscle development35,37. To determine the impact of the a 
priori co-localization information introduced to enforce the presence or the absence of an edge, we analysed the 
evolution from Network 0 to Network 3, first globally (with conserved edges and key genes) and then locally (with 
network clustering and functional enrichment). The global analyses revealed that 82% of edges in Network 0 were 
conserved in Network 3 and that the most important genes (with respect to network structure) in Network 0 were 
among those showing the highest values of betweenness and degree in Network 3. These findings suggest that the 
introduction of enforced edges is not linked to the appearance of major disturbances in the network structure. 
However, when focusing on the target genes analysed by 3D DNA FISH, we observed a general decrease in the 
degree value, meaning that IGF2, DLK1, MEG3, RPL32, MEST, DCN and MYH3 were less connected with the rest 
of the other genes in Network 3. Despite this observed isolation concerning genes for which edges were enforced, 
this effect was not always accompanied by a loss of betweenness. In other words, reinforcing a limited number of 
edges did not change either the global network structure or the importance of target genes in the final network. In 
the local analysis, the NMI value revealed that the clusters resembled one another more with each new network 
inferred. In addition, four out of six clusters in the final network (Network 3) conserved more than 62% of genes 
in the corresponding clusters of Network 0. This concurred with the results of the functional enrichment analy-
sis, which revealed that the GOs found were conserved between Networks 0 and 3. All these results support the 
evidence that our approach did not introduce any substantial disturbance. In fact, this iterative process brought 
substantial improvements; notably, it enabled us to obtain reliable networks in terms of relevant biological infor-
mation, especially around our target genes. This was supported by the following findings: (1) the biological pro-
cesses presenting the smallest FDR were found in Network 3, even though one of them involved DCN, for which 
edge estimations were modified by the introduction of a priori information; (2) two new significant GO terms 
related to energy metabolism appeared in cluster 2 of Network 3; (3) two genes (IGF2 and DCN) analysed by 3D 
DNA FISH were involved in biological processes with smaller FDR in Network 3 than in Network 0. Moreover, 
IGF2 was found in an additional GO of Network 3, while only present in one GO of Network 0.

One of the most important goals of the present article was to elucidate the mechanisms that govern por-
cine skeletal muscle development in late gestation. Many studies have been performed in pig to address this 

Figure 4. Reconstructed network of genes in cluster 1 of Network 3, based on Ingenuity Pathways Knowledge 
Base. Nodes are displayed using various shapes that represent the functional class of the gene product. The 
reconstructed network was generated through the use of Ingenuity Pathway Analysis (IPA) (Ingenuity Systems; 
QIAGEN, Inc., Valencia, CA, USA).
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question21,24,38–41. In our model, we proposed a final network (Network 3) in which enriched biological func-
tions related to muscle development were observed. These observations were in agreement with the results 
obtained by Voillet et al.21. In addition, in the resulting IPA reconstructed network, we highlighted MYOD1 
and CTNNB1 among the proposed transcription factors because they were especially interesting due to their 
connection to two important target genes, IGF2 and MYH3. Although MYOD1 and CTNNB1 were not present 
in the 359 genes used for network inference, they were up-regulated at 90 days of gestation in all genotypes 
(Supplementary Fig. S7)21. MYOD1 encodes for a myogenic factor that regulates skeletal muscle cell differenti-
ation by activating transcription of muscle-specific target genes (for review42). CTNNB1 (β-catenin 1), encodes 
for a transcriptional co-activator that was found to be required for muscle differentiation in murine myoblasts 
by interacting directly with MyoD and promoting its binding to the E box elements enhancing its transcriptional 
activity43. The co-expression and nuclear co-localization of IGF2 and MYH3 suggest they are each subjected to 
similar transcriptional regulation by these two transcription factors. The studies of Shang et al.44 and Ramazzotti 
et al.45 are in agreement with this hypothesis. Shang et al. revealed that in mesenchymal stromal cells from rats, 
an ectopic expression of Ctnnb1 inhibits adipogenetic differentiation and induces the formation of long mult-
inucleated cells expressing myogenic genes, such as MyoD and Myhc, by promoting the expression of skeletal 
muscle-specific transcription factors. Ramazzotti et al. observed that an overexpression and accumulation of 
β-catenin in the nuclei of differentiating murine myoblasts results in higher MyoD activation and Myhc induction. 
Additionally, IGF2 was found to be up-regulated in pig during myogenesis and, more precisely, involved in pri-
mary and secondary muscle fibre differentiation41. Moreover, Myod and Igf2 were observed to be involved in the 
switch between myogenic and adipose lineages in mouse46. In addition, we found IGF2 indirectly associated with 
CTNNB1 (through the intermediary gene IGF2BP1) in the reconstructed network. IGF2BP1 was not used for net-
work inference but was found expressed at the 90th day of gestation (Supplementary Fig. S7)21. Indeed, β-catenin 
was observed to induce IGF2BP1 in HEK293 cells47, which in turn was observed to regulate IGF2 mRNA subcel-
lular location and translation in neurons (for review48). This suggests that in muscle cells, a similar mechanism 
could possibly be involved for the regulation of IGF2 via the CTNNB1 transcription factor. Moreover, the long 
non-coding DNA of MyoD (lncMyoD), directly activated by MyoD, may negatively regulate Igf2bp1-mediated 
translation of proliferation genes in murine myoblasts49. This could explain how MyoD blocks proliferation to 
create a permissive state of differentiation. Moreover, DLK1 and MYOD1 were not connected in the reconstructed 
network. However, DLK1 which encodes for a preadipocyte factor that inhibits adipocyte differentiation50, might 
inhibit cell proliferation and enhance cell differentiation by regulating the expression of MyoD16. Combining 
all this information with the observed up-regulation at 90 days of gestation of the above-mentioned genes, our 
results highlight a network of interrelated genes associated with skeletal muscle regulation and that are mainly 
responsible for inhibition of proliferation and muscle differentiation.

Conclusion
The innovative approach presented here has proven to be consistent, robust and reliable for the inference of gene 
co-expression networks in combination with gene nuclear co-localizations. The information generated by the 
final network brought to light relevant functions involved in the development and maturity of foetal muscle. In 
this context, the challenge for future studies will be to broaden this approach and render it more powerful by com-
bining co-expression data with information about genome-wide interactions51,52 to enforce edges in the network. 
This study also spotlights interesting gene associations in the three-dimensional nuclear space of muscle cells 
such as the associations found between MYH3-IGF2 or MYH3-(DLK1/MEG3). The three genes are up-regulated 
in LW at 90 days of gestation and are involved in muscle development. Determining through further functional 
studies whether and how these genes are co-regulated, will help us to understand the mechanisms involved in the 
establishment of pig muscle maturity.

Materials and Methods
Ethics Statement. All tissues sampled for the experiments were collected on pigs bred for another project 
(ANR-09-GENM-005-01, 2010–2015). The experiment authorization number for the experimental farm GenESI 
(Genetics, testing and innovative systems experimental unit) is A-17-661. The procedures performed in this study 
and the treatment of animals complied with European Union legislation (Directive 2010/63/EU) and French leg-
islation in the Midi-Pyrénées Region of France (Decree 2001-464). The ethical committee of the Midi-Pyrénées 
Regional Council approved the experimental design (authorization MP/01/01/01/11). All the foetuses used in 
this study were males and were obtained by caesarean.

Microarray data description and pre-processing. Expression data were obtained from skeletal muscle 
for two foetal gestational ages (90 and 110 days of gestation) associated with four foetal genotypes (two extreme 
breeds for mortality at birth –Large White (LW) and Meishan (MS)– and two reciprocal crosses –MSxLW and 
LWxMS). The final dataset consisted of 44,368 probes for 61 samples under eight different conditions (four geno-
types at two gestational ages). A precise description of the experimental design and data collection can be found 
in Voillet et al.21. Normalized expression data (log2-transformed) and sample information are available in NCBI 
(GEO accession number GSE56301).

Missing values were imputed with k-NN (R package “impute” function, with k = 3). Gene annotation was 
updated (nblast/NCBI July 2017, Sscrofa10.2) and the 40,847 annotated probes were found to correspond to 
13,855 unique genes. For each gene, the probe with the highest average correlation with the other probes associ-
ated with the same gene was selected to serve as a representative in further statistical analyses.

Network inference. Networks were inferred using Gaussian Graphical Models (GGMs28) from n = 61 sam-
ples. From expression data, GGMs build a graph (or network) in which vertices are genes and edges represent 
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the conditional dependency structure between those genes. GGMs are based on the estimation of partial correla-
tions (i.e., correlations between two gene expressions when the expression of all the other genes is known). They 
were preferred over relevance networks53 because they improve measurement of direct relations between gene 
expressions by accounting for the effect of all expression data, and because they were found to be more efficient 
for grouping together genes with a common function in a previous study29.

Since the number of samples was smaller than the number of genes used for network inference, the models 
were fitted with a sparse penalty54 to address the issues of high-dimensional data and edge selection. In addition, 
as many examples have shown that co-expressed genes occasionally tend to interact preferentially or consolidate 
in specialized foci of the nuclear environment2–5, when a priori information about nuclear gene co-localization is 
available, the latter was included in the model using the approach described in Villa-Vialaneix et al.55. The details 
of the method and of the tuning of the different parameters are given in Supplementary Methods online.

Practical implementation of network inference. The starting point of the analysis was the inference 
of a network with no a priori information about co-localization. Since network inference based on partial corre-
lation can only be performed with a limited number of genes (because of the number of samples) and since the 
number of unique genes (p = 13,855) was too great compared to the number of samples (n = 61), we applied two 
restrictions to the original list. First, we restricted the list to genes that were reported as differentially expressed 
(DEG)21. Secondly, among these DEGs, only those that had an absolute value for their correlation with either 
IGF2, DLK1 or MEG3 larger than 0.84 were kept. This final list contained 359 genes, provided in Supplementary 
Table S1.

Network inference iteration and 3D FISH validations. Based on network inference results or on genes 
found to be connected in the IGN of Varrault et al.12, 3D DNA FISH experiments were performed to check 
whether pairs of genes of interest were co-localized in the 3D nuclear space. These experiments were conducted in 
an iterative manner with network inference. More precisely, network inference was performed with the following 
a priori conditions: (1) Network 0: was inferred with no a priori information, as a baseline for comparison; (2) 
Network 1: was inferred using a priori information from the triple association found in Lahbib-Mansais et al.17 
by giving the three pairs IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 as known co-localized genes. Network 1 
was then used to propose candidate pairs of genes for testing by 3D DNA FISH for Network 2 (IGF2-RPL32) and 
Network 3 (DLK1-MYH3); (3) Network 2: in addition to the initial three pairs, Network 2 was inferred using a 
priori information provided by the results of the new 3D DNA FISH experiments by giving the pairs IGF2-MEST, 
DLK1-MEST, MEG3-MEST, MEG3-DCN, DLK1-DCN, and RPL32-IGF2 as known to be co-localized and 
IGF2-DCN as known not to be co-localized; (4) Network 3: in addition to the 10 previous pairs, Network 3 was 
inferred using a priori information provided by the results of new 3D DNA FISH experiments by giving the addi-
tional pairs IGF2-MYH3, DLK1-MYH3 MEG3-MYH3 and MEST-MYH3 as known co-localized genes.

All simulations were performed with the free statistical software R (https://cran.r-project.org). The inference 
was performed using our own scripts (available at https://github.com/tuxette/internet3D) and the graphs were 
displayed and analysed using the R package igraph (Csardi and Nepusz)56.

Network mining and clustering. Nodes of importance to the network structure were obtained by com-
puting the degree and the betweenness centrality measurement for every node. Node clustering was performed 
by applying the Louvain algorithm57, which performs fast approximate optimization of the modularity58. All 
clusterings were found to be significant using the permutation test described in Montastier et al.59 by generating 
500 random networks with the same degree distribution (all clusterings were found to have a modularity larger 
than that obtained on the 500 random networks, p-value < 0.002). Clusters were compared using two methods: 
first, pairwise contingency tables between clusters were computed. Second, the normalized mutual information 
(NMI60) between pairs of clusterings was obtained. The NMI is a number between 0 and 1 measuring the similar-
ity between two clusterings and is maximum (equal to 1) when the two clusterings are identical.

Functional analysis of the networks. Functional enrichment analysis based on GO was performed 
using the web tool Webgestalt (WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/option.php) 
updated on January 27, 201761,62. The web tool uses the Fisher exact test and controls for the number of false 
positives among the declared significant GOs terms. The False Discovery Rate was used (Benjamini-Hochberg 
procedure63, FDR < 5%). The analysis was performed using the Overrepresentation Enrichment Analysis (ORA) 
method, selecting non-redundant Biological Processes (BPs). The final network was analysed through the use 
of Ingenuity Pathway Analysis version 01–12 (updated on March 31st, 2018). Ingenuity Pathway Analysis (IPA, 
Ingenuity Systems; QIAGEN, Inc., Valencia, CA, USA, https://analysis.ingenuity.com/pa) contains a large bibli-
ographic database (Ingenuity Pathways Knowledge Base) with various molecular relationships already identified 
between two genes (protein-protein interaction, ligand-receptor regulation, enzymatic modification, transcrip-
tional expression regulation, etc.). The obtained network is a graphic representation of the molecular relation-
ships between molecules. All edges are supported by at least one reference from the literature, or from canonical 
information stored in the Ingenuity Pathways Knowledge Base. The obtained networks were improved for rep-
resentation using Path Designer. Nodes are displayed using various shapes that represent the functional class of 
the gene product. The Functional Analysis identified the biological functions, the canonical pathways and the 
upstream regulators that were the most relevant to the dataset. Molecules from the dataset that were associated 
with biological functions, canonical pathways or upstream regulators in the Ingenuity Knowledge Base were 
considered for the analysis. Fisher’s exact test was used to calculate a right-tailed p-value determining the proba-
bility that each function and pathway assigned to that dataset is due to chance alone. The networks proposed by 
IPA were cleaned (some nodes/genes were discarded) in order to keep only the genes necessary to connect the 
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co-expressed genes. The three first networks were merged and regulation information was added to highlight 
transcription factors that could explain unexpected gene co-expression and nuclear co-localization (e.g. MYH3 
and IGF2; Supplementary Table S8).

Tissue preparation. Foetal muscle tissue was obtained from the Longuissimus dorsi muscle of 90-day ges-
tation ♀MSxLW♂ pig and prepared as described in17 with slight modifications. When needed, stored muscle 
fibre packets were permeabilised for 8 min in cytoskeleton extraction buffer (100 mM NaCl, 300 mM sucrose, 
3 mM MgCl2, 10 mM PIPES pH 6.8) containing 0.5% Triton X-100 and then fixed in cold 4% paraformaldehyde 
for 5 min. After washing in cold PBS, muscle packets were manually dilacerated directly on Superfrost glass 
slides (CML, Nemours, France) to isolate individual fibres, and air-dried before adding DNA probes for in situ 
hybridization.

Probes construction. Bacterial artificial clones (BACs) containing genes were isolated from porcine BAC 
libraries (available at the Biological Resources Center-GADIE, INRA, Jouy-en-Josas, France http://abridge.inra.fr/)  
using specific primers designed with Primer3 software (http://primer3.sourceforge.net/) (Supplementary 
Table S2). For multiple-label experiments, approximately 120 ng of each BAC DNA was random-priming labelled 
directly by incorporation of dUTP Alexa Fluor (488 or 568) or indirectly with Biotin-6-dUTP detected by 
immuno-FISH (Bioprime DNA labelling kit, Invitrogen, Cergy Pontoise, France). Chromosomal localizations of 
all BAC probes were controlled by 2D DNA FISH on porcine metaphases prepared from lymphocytes according 
to standard protocols64.

IGF2 had been localized previously on SSC2p17, DLK1/MEG3 on SSC7q26 and ZAR1 on SSC8q11-1217. In 
this study, additional genes were localized on pig metaphases: MYH3 on SSC12q, MEST on SSC18, RPL32 on 
SSC13q24-33, DCN on SSC5qter, and PRLR on SSC16 (Supplementary Table S2).

3D DNA-FISH on interphase nuclei. 3D DNA FISH experiments were conducted using specific probes 
to label each gene with a different colour as described in17 with slight modifications. Probes were resuspended in 
hybridization buffer (50% formamide, 10% dextran sulphate, 2 mg/ml BSA, 2× SSC) at a final concentration of 
110 ng/µl. Nuclear DNA and probes were simultaneously denatured at 74 °C for 7 min and then incubated over-
night at 37 °C in a wet atmosphere (DAKO hybridizer). Washes were then performed with gentle agitation, first 
twice in 2× SSC at room temperature (RT) for 8 min, then twice for 3 min in 2× SSC, 50% formamide pH 7.0 at 
40 °C, and finally twice for 15 min in 2× SSC, then in PBS at RT. When a biotin-labelled probe was used, biotins 
were detected by incubating the slides with streptavidin-Alexa 568 or 488 for 1 hour at RT.

Confocal microscopy and image analyses. Image stacks were captured at different depths with a 
Leica TCSSP2 confocal microscope (Leica Instruments, Heidelberg, Germany) equipped with an oil immer-
sion objective (plan achromatic 63× N.A. = 1.4). The Z-stacks (around 60 confocal planes per capture) were 
acquired at 1024 × 1024 pixels per frame using an 8-bit pixel depth for each channel at a constant voxel size 
of 0.077 × 0.077 × 0.284 μm. Images were analysed with specific software for measuring the 3D distances 
(centre-to-centre) between signals (genes) (NEMO65) as described in17. Euclidean distances were computed with 
respect to the x, y and z resolutions. Given the resolution on the z axis, at least three pixels corresponding to 
0.852 μm (0.284 × 3) were required for a high resolution between two separate signals; consequently, 1 μm was 
chosen as the upper cut-off for associated signals.

Gene-gene associations. In all 3D DNA FISH experiments, nuclei were only analysed when 4 signals 
(corresponding to the 2 alleles of each gene) were present. “Associated” signals were considered to be those sep-
arated by a distance (d) ≤ 1 µm, and were divided into two different classes: “close” signals (0.5 < d ≤ 1 µm), and 
“co-localized” signals (d ≤ 0.5 µm). The great majority of associations concerned uniquely one allele from each 
gene. To establish the threshold for distinguishing between associated and non-associated genes, two 3D DNA 
FISH experiments were performed as negative controls: first, between two genes (ZAR1 and PRLR) located on dif-
ferent chromosomes and expressed at a very low level in muscle cells21, second, between IGF2 (highly expressed) 
and ZAR1 (low expression)17. In both cases, the two genes were found to be associated in only 8% of the analysed 
nuclei. Considering this value as a sporadic association between loci not expected to be associated, a 10% value 
was arbitrarily chosen to distinguish between associated and non-associated genes.

Data availability. The data sets supporting the results of this article are available in the NCBI’s Gene 
Expression Omnibus repository, and are available through GEO Series accession number GSE56301.
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