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Abstract. Originally developed in bioinformatics, sequence analysis is
being increasingly used in social sciences for the study of life-course pro-
cesses. The methodology generally employed consists in computing dis-
similarities between the trajectories and, if typologies are sought, in clus-
tering the trajectories according to their similarities or dissemblances.
The choice of an appropriate dissimilarity measure is a major issue when
dealing with sequence analysis for life sequences. Several dissimilarities
are available in the literature, but neither of them succeeds to become
indisputable. In this paper, instead of deciding upon one dissimilarity
measure, we propose to use an optimal convex combination of different
dissimilarities. The optimality is automatically determined by the clus-
tering procedure and is defined with respect to the within-class variance.

1 Introduction

Originally developed in bioinformatics, sequence analysis is being in-
creasingly used in social sciences for the study of life-course processes.
The methodology generally employed consists in computing dissimilari-
ties between the trajectories and, if typologies are sought, in clustering
the trajectories according to their similarities or dissemblances. However,
measuring dissimilarities or similarities for categorical sequences has al-
ways been a challenge in practice. This challenge becomes even harder in
social sciences where these measures need some theoretical foundations.
Choosing the appropriate dissimilarity or dissimilarity for life-sequence
analysis is a key issue which relates to the resulting typologies. The lit-
erature on this topic is very rich and still very debated. Each method
has its own advantages and drawbacks [1, 2].
In this paper, we introduce a different approach. Instead of deciding upon
one specific dissimilarity, we propose to use several ones, optimally com-
bined. We consider three main categories of dissimilarities : χ2-metric
[3], optimal matching [2] and non-alignement techniques [1]. Since our
final goal is to extract typologies for life sequences, we are looking for
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the best convex combination of the different dissimilarities which pro-
vides the best clusters in terms of homogeneity. The algorithm used for
clustering is a self-organizing map (SOM). We use a modified version of
the online relational SOM introduced in [4]. In the algorithm proposed
here, an additional step is added to each iteration. During this step,
the coefficients of the convex combination of dissimilarities are updated
according to a gradient-descent principle which aims at minimizing the
extended within-class variance.
The rest of the manuscript is organized as follows : Section 2 reviews
the different dissimilarities usually used to handle categorical time series.
Section 3 describes the online relational SOM for multiple dissimilarities.
Section 4 presents a detailed application for sequences related to school-
to-work transitions.

2 Dissimilarities for Life Sequences

Three main categories of dissimilarities were addressed in our study. Each
of them is briefly described below.
χ2-distance. Historically, factor analysis was used first to extract ty-
pologies from life sequences, [3]. The sequences, which are categorical
data, were transformed by running a multiple correspondence analy-
sis (MCA) on the complete disjunctive table. Then, clustering methods
adapted to continuous data were applied and the main typologies were
extracted. Performing MCA and then computing the Euclidean distance
on the resulting vectors is equivalent to computing the χ2-distance on
the rows of the complete disjunctive table. The χ2-distance is weight-
ing each variable by the inverse of the associated frequency. Hence, the
less frequent situations have a larger weight in the distance and the
rare events become more important. Also, the χ2-distance emphasizes
the contemporary identical situations, whether these identical moments
are contiguous or not. However, the transitions between statuses are not
taken into account and input vectors are close only if they share contem-
porary statuses throughout time.
Optimal-matching dissimilarities. Optimal matching, also known as
“edit distance” or “Levenshtein distance”, was first introduced in bi-
ology by [5] and used for aligning and comparing sequences. In social
sciences, the first applications are due to [6]. The underlying idea of op-
timal matching is to transform the sequence i into the sequence i′ using
three possible operations: insertion, deletion and substitution. A cost is
associated to each of the three operations. The dissimilarity between i

and i′ is computed as the cost associated to the smallest number of op-
erations which allows to transform i into i′. The method seems simple
and relatively intuitive, but the choice of the costs is a delicate operation
in social sciences. This topic is subject to lively debates in the literature
[7, 8] mostly because of the difficulties to establish an explicit and sound
theoretical frame. Among optimal-matching dissimilarities, we selected
three dissimilarities: the OM with substitution costs computed from the
transition matrix between statuses as proposed in [9], the Hamming dis-
similarity (HAM, no insertion or deletion costs and a substitution cost
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equal to 1) and the Dynamic Hamming dissimilarity (DHD as described
in [10]).
Non-alignment techniques. Since the definition of costs represents an
important drawback for optimal-matching dissimilarities, several alterna-
tives were proposed in the literature. Here, we considered three different
dissimilarities introduced by C. Elzinga [1, 11]: the longest common pre-
fix (LCP), the longest common suffix or reversed LCP (RLCP) and the
longest common subsequence (LCS). Dissimilarities based on common
subsequences are adapted to handle transitions between statuses while
they take into account the order in the sequence. They are also able to
handle sequences of different lengths.

3 Relational SOM

Extracting typologies from life sequences requires clustering algorithms
based on dissimilarity matrices. Generally, hierarchical clustering or K-
means are used in the literature, [2]. In this paper, we focus on a different
approach, based on a Self-Organizing Map (SOM) algorithm [12]. The
interest of using a SOM algorithm adapted to dissimilarity matrices was
shown in [13]. Self-organizing maps possess the nice property of pro-
jecting the input vectors in a two-dimensional space, while clustering
them. In [13], the authors used dissimilarity SOM (DSOM) introduced
by [14]. OM with substitution cost defined from the transition matrix
was used to measure the dissimilarity between sequences. While DSOM
improves clustering by additionally providing a mapping of the typolo-
gies, it still has a major drawback: prototypes have to be chosen among
the input vectors. Thus, the clustering doesn’t allow for empty clusters,
which may be quite restrictive in some cases. Moreover, this property
of DSOM makes it very sensitive to the initialization. The computation
time is also very important, since the research of the prototype is done
exhaustively among all input vectors and the algorithm is of batch type.
Online relational SOM. Inspired by the online kernel version of SOM
[15], [4] recently proposed an online version of SOM for dissimilarity ma-
trices, called online relational SOM. Online relational SOM is based on
the assumption that prototypes may be written as convex combinations
of the input vectors, as previously proposed in [16]. This assumption
gives more flexibility to the algorithm, which now allows for empty clus-
ters. Moreover, since the algorithm is online, the dependency on the
initialization lessens and the computation time also decreases.
In the online relational SOM, n input data, x1, . . . , xn, taking values
in an arbitrary input space G, are described by a dissimilarity matrix
∆ = (δij)i,j=1,...,n such that ∆ is non negative (δij ≥ 0), symmetric
(δij = δji) and null on the diagonal (δii = 0). The algorithm maps the
data into a low dimensional grid composed of U units which are linked
together by a neighborhood relationship H(u, u′). A prototype pu is as-
sociated with each unit u ∈ {1, . . . , U} in the grid. To allow computation
of dissimilarities between the prototypes (pu)u and the data (xi)i, the
prototypes are symbolically represented by a convex combination of the
original data pu ∼

∑

i
βuixi with βui ∈ [0, 1] and

∑

i
βui = 1.
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Online multiple relational SOM. As explained in the introduction,
the choice of a dissimilarity measure in social sciences is a complex issue.
When the purpose is to extract typologies, the results of the clustering
algorithms are highly dependent on the criterion used for measuring the
dissemblance between two sequences of events. A different approach is
to bypass the choice of the metric: instead of having to choose one dis-
similarity measure among the existing ones, use a combination of them.
However, this alternative solution requires an adapted clustering algo-
rithm.

Similarly to the multiple kernel SOM introduced in [17], we propose
the multiple relational SOM (MR-SOM). Here, D dissimilarity matrices
measured on the input data, ∆1, . . . , ∆D, are supposed to be avail-
able. These matrices are combined into a single one, defined as a convex
combination: ∆α =

∑

d
αd∆

d where αd ≥ 0 and
∑D

d=1
αd = 1.

If the (αd) are given, relational SOM based on the dissimilarity ∆α aims
at minimizing over (βui)ui and (αd)d the following energy function :

E((βui)ui, (αd)d) =

n
∑

i=1

U
∑

u=1

H (f(xi), u) δ
α (xi, pu(βu)) ,

where f(xi) is the neuron where xi is classified
4, δα (xi, pu(βu)) is defined

by δα (xi, pu(βu)) ≡ ∆α
i βu −

1

2
βT
u ∆αβu and ∆α

i is the i-th row of the
matrix ∆α.

When there is no a-priori on the (αd)d, we propose to include the
optimization of the convex combination into an online algorithm that
trains the map. Following an idea similar to that of [18], the SOM is
trained by performing, alternatively, the standard steps of the SOM
algorithm (i.e., affectation and representation steps) and a gradient
descent step for the (αi)i. To perform the stochastic gradient de-
scent step on the (αd), the computation of the derivative of E|xi

=
∑M

u=1
H (f(xi), u) δ

α (xi, pu(βu)) (the contribution of the randomly cho-
sen observation (xi)i to the energy) with respect to α is needed. But,

Did =
∂E|xi

∂αd

=
∑M

u=1
H (f(xi), u)

(

∆d
i βu −

1

2
βT
u ∆dβu

)

, which leads to
the algorithm described in Algorithm 1.

4 Application for the analysis of Life Sequences

Data. For illustrating the proposed methodology and its relevance for
categorical time series analysis, we used the data in the survey “Gen-
eration 98” from CEREQ, France (http://www.cereq.fr/). According to
the French National Institute of Statistics, 22,7% of young people un-
der 25 were unemployed at the end of the first semester 2012.5 Hence,

4 Usually, it is simply the neuron whose prototype is the closest to xi: see Algorithm 1.
5 All computations were performed with the free statistical software environment R

(http://cran.r-project.org/, [19]). The dissimilarity matrices (except for the χ2-
distance) and the graphical illustrations were carried out using the TraMineR package
[20]. The online multiple dissimilarity SOM was implemented by the authors.
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Algorithm 1 Online multiple dissimilarity SOM

1: ∀u and i initialize β0

ui randomly in R and ∀ d, set αd.
2: for t=1,. . . ,T do

3: Randomly choose an input xi

4: Assignment step: find the unit of the closest prototype

f
t(xi)← arg min

u=1,...,M
δ
α,t (xi, pu(βu))

5: Representation step: update all the prototypes: ∀ u,

β
t
ul ← β

t−1

ul + µ(t)H(f t(xi), u)
(

δil − β
t−1

ul

)

6: Gradient descent step: update the dissimilarity: ∀ d = 1, . . . , D,

α
t
d ← α

t−1

d + ν(t)Dt
d and δ

α,t ←
∑

d

α
t
dδ

d
.

7: end for

the question of how is achieved the transition from school to employ-
ment or unemployment is crucial in the current economic context. The
dataset contains information on 16 040 young people having graduated in
1998 and monitored during 94 months after having left school. The labor-
market statuses have nine categories, labeled as follows: permanent-labor
contract, fixed-term contract, apprenticeship contract, public temporary-
labor contract, on-call contract, unemployed, inactive, military service,
education. The following stylized facts are highlighted by a first descrip-
tive analysis of the data as shown in Figure 1:

– permanent-labor contracts represent more than 20% of all statuses
after one year and their ratio continues to increase until 50% after
three years and almost 75% after seven years;

– the ratio of fixed-terms contracts is more than 20% after one year on
the labor market, but it is decreasing to 15% after three years and
then seems to converge to 8%;

– almost 30% of the young graduates are unemployed after one year.
This ratio is decreasing and becomes constant, 10%, after the fourth
year.

In this dataset, all career paths have the same length, the status of the
graduate students being observed during 94 months. Hence, we suppose
that there are no insertions or deletions and that only the substitution
costs have to be defined for OM metrics.

Seven different dissimilarities were considered: the χ2-distance, the Ham-
ming dissimilarity (HAM), OM with substitution-cost matrix computed
from the transition matrix as shown in Section 2, the dynamic Hamming
dissimilarity (DHD) as defined in [10], the longest common prefix (LCP),
the longest common suffix or reversed LCP (RLCP), the longest common
substring (LCS).
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Fig. 1. Labor market structure

5 Preliminary study

Since the original data contain more than 16 000 input sequences and
since the relational SOM algorithms are based on dissimilarity matrices,
the computation time becomes rapidly very important. Hence, in order to
identify the role of the different dissimilarities in extracting typologies, we
considered several samples drawn at random from the data. For each of
the experiments below, 50 samples containing 1 000 input sequences each
were considered. For each sample, the seven dissimilarity matrices listed
above were computed and normalized according to the max norm. In
order to assess the quality of the maps, three indexes were computed : the
quantization error and the dispersion between prototypes for quantifying
the quality of the clustering and the topographic error for quantifying
the quality of the mapping. These quality criterai all depend on the

references for the

three indexes

dissimilarities used to train the map but the results are made comparable
by using normalized dissimilarities.
Optimal-matching metrics. The first experiment was concerned with
the three optimal-matching metrics. The results are listed in Table 1. Ac-
cording to the mean values of the α’s, the three dissimilarities contributed
to extracting typologies. The Hamming and the dynamical Hamming dis-
similarities have similar weights, while the OM with cost-matrix defined
from the transition matrix has the largest weight. The mean quantiza-
tion error computed on the maps trained with the three dissimilarities
optimally combined is larger than the quantization error computed on
the map trained with the OM metric only. On the other hand, the topo-
graphic error is improved in the mixed case. In this case, the joint use of
the three dissimilarities provides a trade-off between the quality of the
clustering and the quality of the mapping. The results in Table 1 confirm
the difficulty to define adequate costs in OM and the fact that the metric
has to be chosen according to the aim of the study : building typologies
(clustering) or visualizing data (mapping).
Elzinga metrics. When MR-SOM clustering is performed using the
three Elzinga metrics only, the results in Table 2 are clearly in favor of
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a) Optimally-tuned α

Metric OM HAM DHD

α-Mean 0.43111 0.28459 0.28429
α-Std 0.02912 0.01464 0.01523

b) Quality criteria for the SOM-clustering

Metric OM HAM DHD Optimally-tuned α

Quantization error 92.93672 121.67305 121.05520 114.84431
Topographic error 0.07390 0.08806 0.08124 0.05268

Prototype dispersion 2096.95282 2255.36631 2180.44264 2158.54172
Table 1. Preliminary results for three OM metrics

the LCS. This result is less intuitive. For example, the LCP metric has
been widely used in social sciences and more particularly for studying
school-to-work transitions. Indeed, it is obvious that all sequences start
with the same status, being in school. Hence, the longer two sequences
will be identical, the less different they should be. However, according
to our results, it appears that if the purpose of the study is to build
homogeneous clusters and identify the main typologies, LCS should be
used instead. Thus we can assume that a trajectory is not defined by the
first or the final job but rather by the proximity of the transitions during
the career-path. As in the previous example, the quality indexes in Table
2 show that the use of an optimally-tuned combination of dissimilarities
provides a nice trade-off between clustering (the quantization error) and
mapping (the topographic error).

a) Optimally-tuned α

Metric LCP RLCP LCS

α-Mean 0.02739 0.00228 0.97032
α-Std 0.02763 0.00585 0.02753

b) Quality criteria for the SOM-clustering

Metric LCP RLCP LCS Optimally-tuned α

Quantization error 379.77573 239.63652 93.50893 107.1007
Topographic error 0.07788 0.04344 0.07660 0.0495

Prototype dispersion 2693.47676 2593.21763 2094.27678 2080.8514
Table 2. Preliminary results for three Elzinga metrics

OM, LCS and χ2 metrics. Finally, the MR-SOM was run with the
three OM metrics, the best Elzinga dissimilarity, LCS, and the χ2-
distance. According to the results in Table 3, the χ2-distance has the
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most important weight and it contributes the most to the resulting clus-
tering. The weights of the other dissimilarities are generally below 5%.
The clustering and the resulting typologies are then defined by the con-
temporaneity of their identical situations, rather then by the transitions
or the common subsequences. Hence, it appears that the timing and
not the duration or the order is important for the clustering procedure.
This confirms the importance of the history on the identification of a
trajectory. Some temporal events are crucial on the labor market and a
common behavior during these periods is determinant to define a com-
mon typology. However, let us remark two things. On the one hand, the
quantization error is significantly improved, hence the clustering prop-
erties of the mixture of the five dissimilarities are better than for the
previous examples. On the other hand, the topographic error becomes
very large, hence the mapping properties are degraded. The combina-
tion of the five dissimilarities is then particularly adapted for extracting
typologies, but is less interesting for visualization purposes.

a) Optimally-tuned α

Metric OM HAM DHD LCS χ2

α-Mean 0.06612 0.03515 0.03529 0.03602 0.82739
α-Std 0.04632 0.02619 0.02630 0.03150 0.07362

b) Quality criteria for the SOM-clustering

Metric Optimally-tuned α

Quantization error 75.23233
Topographic error 0.56126

Prototype dispersion 484.00436
Table 3. Preliminary results for the five best dissimilarities

5.1 Results on the Whole Data Set

In addition to the statistical indexes computed in the previous section,
we can compare different dissimilarities by inspecting the resulting self-
organizing maps. Three maps were trained on the whole data set : the
first is based on the χ2-distance, the second on the best performing
Elzinga metric in the above section, the length of the longest subse-
quence (LCS), while the third was obtained by running online multiple-
relational SOM on the three optimal-matching dissimilarities (OM, Ham-
ming, DHD). We can note that the three maps provide some common
paths: a fast access to permanent contracts (clear blue), a transition
through fixed-term contracts before obtaining stable ones (dark and then
clear blue), a holding on precarious jobs (dark blue), a public temporary
contract (dark green) or an on-call (pink) contract ending at the end
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by a stable one, a long period of inactivity (yellow) or unemployment
(red) with a gradual return to employment. The maps obtained by LCS
and OM dissimilarities are quite similar. A drawback of the OM map is
its difficulty to integrate paths characterized by a long return in the ed-
ucative system (purple). This path is better integrated in the LCS map.
The visual interpretation of the two maps gives support to the OM map
due to a progressive transition on the map between trajectories of exclu-
sion on the west and quick integration on the east. This reading is less
clear on the LCS map. The χ2 map is a little bit different: we observe
more different trajectories (by example a start by apprenticeship contract
(clear green) ending with a fixed-term or a permanent-term contract).
The reading of the map is easy without any outliers paths and a clear dis-
tinction of the trajectories between north (exclusion - education in west,
unemployment in east), middle (specific short-term contracts - public,
apprenticeship and on-call from west to east) and south (integration -
long term contracts in east, short term ones in east). Overall its diversity
and its ease to read give support to the χ2 map against the LCS and OM
ones. This confirms that the overweighting of the χ2-distance on the five
dissimilarities could be attributed to a better fit of this dissimilarity on
our dataset.

Fig. 2. Final map obtained with the χ2-distance
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Fig. 3. Final map obtained with the LCS-dissimilarity

Fig. 4. Final map obtained with the OM dissimilarities
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6 Conclusion and future work

A modified version of online relational SOM, capable of handling several
dissimilarity matrices while automatically optimizing a convex combina-
tion of them, was introduced. The algorithm was used for analyzing life
sequences for which the question of selecting an appropriate metric is
largely debated. Instead of one dissimilarity, we used several categories
that were automatically mixed in an optimal combination.
As explained in the previous section, the main drawback of the proposed
relational SOM algorithm is related to the computation time. We are
currently investigating a sparse version which will allow us to handle
very large datasets.
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