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Abstract. In some applications and in order to address real world sit-
uations better, data may be more complex than simple vectors. In some
examples, they can be known through their pairwise dissimilarities only.
Several variants of the Self Organizing Map algorithm were introduced
to generalize the original algorithm to this framework. Whereas median
SOM is based on a rough representation of the prototypes, relational
SOM allows representing these prototypes by a virtual combination of
all elements in the data set. However, this latter approach suffers from
two main drawbacks. First, its complexity can be large. Second, only
a batch version of this algorithm has been studied so far and it often
provides results having a bad topographic organization. In this article,
an on-line version of relational SOM is described and justified. The algo-
rithm is tested on several datasets, including categorical data and graphs,
and compared with the batch version and with other SOM algorithms
for non vector data.

1 Introduction

In many real-world applications, data cannot be described by a fixed set of
numerical attributes. This is the case, for instance, when data are described by
categorical variables or by relations between objects (i.e., persons involved in
a social network). A common solution to address this kind of issue is to use
a measure of resemblance (i.e., a similarity or a dissimilarity) that can handle
categorical variables, graphs or focus on specific aspects of the data, designed
by expertise knowledge. Many standard methods for data mining have been
generalized to non vectorial data, recently including prototype-based clustering.
The recent paper [6] provides an overview of several methods that have been
proposed to tackle complex data with neural networks.

In particular, several extensions of the Self-Organizing Maps (SOM) algo-
rithm have been proposed. One approach consists in extending SOM to categor-
ical data by using a method similar to Multiple Correspondence Analysis, [5].
Another approach uses the median principle which consists in replacing the stan-
dard computation of the prototypes by an approximation in the original dataset.
This principle was used to extend SOM to dissimilarity data in [15]. One of the
main drawbacks of this approach is that forcing the prototypes to be chosen
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among the dataset is very restrictive; in order to increase the flexibility of the
representation, [3] propose to represent a class by several prototypes, all chosen
among the original dataset. However this method increases the computational
time and prototypes still stay restricted to the original dataset, hence reflecting
possible sampling or sparsity issues.

An alternative to median-based algorithms relies on a method that is close to
the classical algorithm used in the Euclidean case and is based on the idea that
prototypes may be expressed as linear combinations of the original dataset. In
the kernel SOM framework, this setting is made natural by the use of the kernel
that maps the original data into a (large dimensional) Euclidean space (see [16,
1] for on-line versions and [2] for the batch version). Many kernels have been
designed to handle complex data such as strings, nodes in a graphs or graphs
themselves [10].

More generally, when the data are already described by a dissimilarity that
is not associated to a kernel, [12, 18, 11] use a similar idea. They introduce an
implicit “convex combination” of the original data to extend the classical batch
versions of SOM to dissimilarity data. This approach is known under the name
“relational SOM”. The purpose of the present paper is to show that the same
idea can be used to define on-line relational SOM. Such an approach reduces the
computational cost of the algorithm and leads to a better organization of the
map. In the remaining of this article, Section 2 describes the methodology and
Section 3 illustrates its use on simulated and real-world data.

2 Methodology

In the following, let us suppose that n input data, x1, . . . , xn, from an arbitrary
input space G are given. These data are described by a dissimilarity matrix
D = (δij)i,j=1,...,n such that D is non negative (δij ≥ 0), symmetric (δij = δji)
and null on the diagonal (δii = 0). The purpose of the algorithm is to map these
data into a low dimensional grid composed of U units which are linked together
by a neighborhood relationship K(u, u′). A prototype pu is associated with each
unit u ∈ {1, . . . , U} in the grid. The U prototypes (p1, p2, . . . , pU ) are initialized
either randomly among the input data or as random convex combinations of the
input data.

In the Euclidean framework, where the input space is equipped with a
distance, the matrix D is the distance matrix with entries δij = ‖xi − xj‖2. In
this case, the on-line SOM algorithm iterates

– an assignment step: a randomly chosen input xi is assigned to the closest
prototype denoted by pf(xi) according to shortest distance rule

f(xi) = arg min
u=1,...,U

‖xi − pu‖,

– a representation step: all prototypes are updated

pnew
u = pold

u + αK(f(xi), u) (xi − pu) ,
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where α is the training parameter.

In the more general framework, where the data are known through pair-
wise distances only, the assignment step cannot be carried out straightforwardly
since the distances between the input data and the prototypes may not be di-
rectly computable. The solution introduced in [18] consists in supposing that
prototypes are convex combinations of the original data, pu =

∑
i βuixi with

βui > 0 and
∑

i βui = 1. If βu denotes the vector (βu1, βu2, . . . , βun), the dis-
tances in the assignment step can be written in terms of D and βu only:

‖xi − pu‖2 = (Dβu)i −
1

2
βT
uDβu.

According to [18], the equation above still holds if the matrix D is no longer
a distance matrix, but a general dissimilarity matrix, as long as it is symmetric
and null on the diagonal. A generalization of the batch SOM algorithm, called
batch relational SOM, which holds for dissimilarity matrices is introduced in
[18].

The representation step may also be carried out in this general framework
as long as the prototypes are supposed to be convex combinations of the input
data. Hence, using the same ideas as [18], we introduce the on-line relational
SOM, which generalizes the on-line SOM to dissimilarity data. The proposed
algorithm is the following:

Algorithm 1 On-line relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui randomly in R, such that β0

ui ≥ 0
and

∑n
i β

0
ui = 1.

2: for t=1,. . . ,T do
3: Randomly chose an input xi
4: Assignment : find the unit of the closest prototype

f t(xi)← arg min
u=1,...,U

(
βt−1
u D

)
i
− 1

2
βt−1
u D(βt−1

u )T

5: Update of the prototypes: ∀u = 1, . . . , U ,

βt
u ← βt−1

u + αtKt(f t(xi), u)
(
1i − βt−1

u

)
where 1i is a vector with a single non null coefficient at the ith position, equal to
one.

6: end for

In the applications of Section 3, the parameters of the algorithm are chosen
according to [4]: the neighborhood Kt decreases in a piecewise linear way, start-
ing from a neighborhood which corresponds to the whole grid up to a neighbor-
hood restricted to the neuron itself; αt vanishes at the rate of 1/t. Let us remark
that if the dissimilarity matrix is a Euclidean distance matrix, relational on-line



4 On-line SOM for dissimilarity data

SOM is equivalent to the classical on-line SOM algorithm, as long as the n input
data contain a basis of the input space G.

As explained in [8], although batch SOM possesses the nice properties of
being deterministic and of usually converging in a few iterations, it has several
drawbacks such as bad organization, bad visualization, unbalanced classes and
strong dependence on the initialization. Moreover, the computational complexity
of the online algorithm may be significantly reduced with respect to the batch
algorithm. For one iteration, the complexity of the batch algorithm is O(Un3 +
Un2), while for the online algorithm it is O(Un2+Un). However, since the online
algorithm has to scan all input data, the number of iterations is significantly
larger than in the batch case. To summarize, if T1 is the number of iterations
for batch relational SOM and T2 is the number of iterations for online relational
SOM, the ratio between the two computation times will be T1n/T2.

For illustration, let us consider 500 points sampled randomly from the uni-
form distribution in [0, 1]

2
. The batch version of relational SOM and the on-line

version of relational SOM were performed with identical 10x10 grid structures
and identical initializations. Results are available in Figure 1. Batch relational
SOM converged quickly, in 20 iterations (the grid organization is represented at
iterations 0 (random initialization), 5, 9, 13, 17 and 20), but the map is not well
organized. On-line relational SOM converged in less than 2500 iterations (the
grid organization is represented at iterations 0 (initialization), 500, 1000, 1500,
2000 and 2500), but the map is now almost perfectly organized. This results was
achieved in 40 minutes for the batch version and in 10 minutes for the on-line
version on a netpc (with 2× 1GHz AMD processors and 4Go RAM).

3 Applications

This section presents several applications of the on-line relational SOM on vari-
ous datasets. Section 3.1 deals with simulated data described by numerical vari-
ables, but organized on a non linear surface. Section 3.2 is an application on a
real dataset where the individuals are described by categorical variables. Finally,
Section 3.3 is an application to the clustering of nodes of a graph.

3.1 Swiss roll

Let us first use a toy example to illustrate the stochastic version of relational
SOM. The simulated data is the popular Swiss roll, a two-dimensional manifold
embedded in a three-dimensional space. This example has already been used for
illustrating the performances of Isomap [20]. The data has the shape illustrated
by Figure 2. 5 000 points were simulated. However, since all methods presented
here work with matrices of pairwise distances, the computation times would have
been rather heavy for 5 000 points. Hence, we run the different algorithms on
1 000 points uniformly distributed on the manifold. First, the distance matrix
was computed using the geodesic distance based on the K-rule with K = 10.
Then, two types of algorithms were performed: multidimensional scaling and
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Batch relational SOM (20 iterations)

On-line relational SOM (2500 iterations)

Fig. 1. Batch and on-line SOM organization for 500 samples from the uniform distri-
bution in [0, 1]2. The same initialization was used for both algorithms.

self-organizing maps. The results obtained with Isomap [20] are available in
Figure 2. As expected, both methods succeed in unfolding the Swiss roll and the
results are very similar. Next, batch median SOM and on-line relational SOM
were applied to the dissimilarity matrix computed with the geodesic distance.
As shown in Figure 3, the size of the map plays an important role in unfolding
the data. For squared grids, the problem is not completely solved by either of
the two algorithms. Nevertheless, on-line relational SOM manages to project
the different scrolls of the roll into separate regions on the map. Moreover, some
empty cells highlight the roll structure, which is not completely unfolded but
rather projected without overlapping. Since squared grids appeared too heavily
constrained, we also tested rectangular grids. The results are better for both



6 On-line SOM for dissimilarity data

algorithms which both manage to unfold the data. However, the on-line version
clearly outperforms the batch version.

Fig. 2. Unfolding the Swiss roll using Isomap

a) 15x15-grid batch median SOM b) 15x15-grid on-line relational SOM

c) 30x10-grid batch median SOM b) 30x10-grid on-line relational SOM

Fig. 3. Unfolding the Swiss roll using self-organizing maps

3.2 Amazonian butterflies

This data set contains 465 input data and was previously used by [13] to demon-
strate the synergy between DNA barcoding and morphological-diversity studies.
The notion of DNA barcoding comprises a wide family of molecular and bioin-
formatics methods aimed at identifying biological specimens and assigning them
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to a species. According to the vast literature published during the past years
on the topic, two separate tasks emerge for DNA barcoding: on the one hand,
assign unknown samples to known species and, on the other hand, discover un-
described species, [7]. The second task is usually approached with the Neighbor
Joining algorithm [19] which constructs a tree similar to a dendrogram. When
the sample size is large, the trees become rapidly unreadable. Moreover, they
are quite sensitive to the order in which the input data are presented. Let us
also mention that unsupervised learning and visualization methods are used to a
very limited extent by the DNA barcoding community, although the information
they bring may be quite useful. The use of self-organizing maps may be quite
helpful in visualizing the data and bringing out clusters or groups of clusters
that may correspond to undescribed species.

DNA barcoding data are composed of sequences of nucleotides, i.e. sequences
of “a”, “c”, “g”, “t” letters in high dimension (hundreds or thousands of sites).
Specific distances and dissimilarities such as the Kimura-2P ([14]) are usually
computed. Hence, since the data is not Euclidean, dissimilarity-based methods
appear to be more appropriate. Recently, batch median SOM was tested in [17]
on several data sets, amongst which the Amazonian butterflies. Although me-
dian SOM provided encouraging results, two main drawbacks emerged. First,
since the algorithm was run in batch, the organization of the map was gener-
ally poor and highly depending on the initialization. Second, since the algorithm
calculates a prototype for each cluster among the dataset, it does not allow
for empty clusters. Thus, the existence of species or groups of species was dif-
ficult to acknowledge. The use of on-line relational SOM overcomes these two
issues. As shown in Figure 4, clusters are generally not mixing species, while
the empty cells allow detecting the main groups of species. The only mixing
class corresponds to a labeling error. Unsupervised clustering may thus be use-
ful in addressing misidentification issues. In Figure 4b, distances with respect
to the nearest neighbors were computed for each node. The distance between
two nodes/cells is computed as the mean dissimilarity between the observations
within each class. A polygon is drawn within each cell with vertices proportional
to the distances to its neighbors. If two neighbor prototypes are very close, then
the corresponding vertices are very close to the edges of the two cells. If the dis-
tance between neighbor prototypes is very large, then the corresponding vertices
are far apart, close to the center of the cells.

3.3 Political books

This application uses a dataset modeled by a graph having 105 nodes. The nodes
are books about US politics published around the time of the 2004 presidential
election and sold by the on-line bookseller Amazon.com. Edges between two
nodes represent frequent co-purchasing of the two books by the same buyers.
The graph contains 441 edges and all nodes are labeled according to their polit-
ical orientation (conservative, liberal or neutral). The graph has been extracted
by Valdis Krebs and can be downloaded at http://www-personal.umich.edu/

~mejn/netdata/polbooks.zip.
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a) Species diversity (radius proportional to
the size of the cluster)

b) Distances between prototypes

Fig. 4. On-line relational SOM for Amazonian butterflies

On-line relational SOM was used to cluster the nodes of the graph, accord-
ing to the length of the shortest path between two nodes, which is a standard
dissimilarity measure between nodes in a graph. Figures 5 and 6 (left) provide
two representations of the “political books” network: the first one is the origi-
nal graph displayed with a force directed placement algorithm, which is the one
described in [9] and colored according to the clusters in which the nodes are
classified. The second one is a simplified representation of the graph on the grid,
where each node represents a cluster. The colors in the first figure and the den-
sity of edges in the second one shows that the clustering has a good organization
on the grid, according to the graph structure: groups of nodes that are densely
connected are classified in the same or in close clusters whereas groups of nodes
that are not connected are classified apart.

Additionally, Figure 6 provides the distribution of the node labels inside each
cluster for the obtained clustering (on the right hand part of the figure). Almost
all clusters contain books having the same political orientation. Clusters that
contain books with multiple political orientations are in the middle of the grid
and include neutral books. Hence, this clustering can give a clue on a more subtle
political orientation than the original labeling: for instance, liberal books from
cluster 12 probably have a weaker commitment that those from clusters 1 or 2.

4 Conclusion

An on-line version of relational SOM is introduced in this paper. It combines the
standard advantages of the stochastic version of the SOM (better organization
and faster computation) with the relational SOM that is able to handle data de-
scribed by a dissimilarity. The algorithm shows good performances in projecting
data described either by numerical variables or by categorical variable, as well
as in clustering the nodes of a graph.
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Fig. 5. “Political books” network displayed with a force directed placement algorithm.
The nodes are labeled according to their political orientation and are colored according
to a gradient that aims at emphasizing the distance between clusters on the grid, as
represented at the top the figure.

Fig. 6. Left: Simplified representation of the graph on the grid: each node represents a
cluster whose area is proportional to the number of nodes included in it and the edges
width represents the number of edges between the nodes of the corresponding cluster.
Right: Distribution of the node labels for each neuron of the grid for the clustering
obtained with the dissimilarity based on the length of the shortest paths. Red is for
liberal books, blue for conservative books and green for neutral books.
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