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Abstrat

In some appliations and in order to address real-world situations better, data

may be more omplex than simple numerial vetors. In some examples, data

an be known only through their pairwise dissimilarities or through multiple

dissimilarities, eah of them desribing a partiular feature of the data set.

Several variants of the Self Organizing Map (SOM) algorithm were intro-

dued to generalize the original algorithm to the framework of dissimilarity

data. Whereas median SOM is based on a rough representation of the proto-

types, relational SOM allows representing these prototypes by a virtual linear

ombination of all elements in the data set, referring to a pseudo-eulidean

framework. In the present artile, an on-line version of relational SOM is in-

trodued and studied. Similarly to the situation in the Eulidean framework,

this on-line algorithm provides a better organization and is muh less sen-

sible to prototype initialization than standard (bath) relational SOM. In a

more general ase, this stohasti version allows us to integrate an additional

stohasti gradient desent step in the algorithm whih an tune the respe-

tive weights of several dissimilarities in an optimal way: the resultingmultiple

relational SOM thus has the ability to integrate several soures of data of dif-

ferent types, or to make a onsensus between several dissimilarities desribing

the same data. The algorithms introdued in this manusript are tested on

several data sets, inluding ategorial data and graphs. On-line relational

SOM is urrently available in the R pakage SOMbrero that an be down-

loaded at http://sombrero.r-forge.r-projet.org/ or diretly tested on

its Web User Interfae at http://shiny.nathalievilla.org/sombrero.
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Dissimilarity, Graph, Categorial Time Series

1. Introdution

In many real-world appliations, data an not always be desribed by a

�xed set of numerial attributes. This is the ase, for instane, when data

are desribed by ategorial variables or by relations between objets (i.e.,

persons involved in a soial network). This issue an be even trikier when the

data are omposed of several soures of non homogeneous information (e.g., a

soial network together with attributes on the nodes as in [1, 2℄). A ommon

solution to address this kind of issue is to use a measure of resemblane (i.e.,

a similarity or a dissimilarity) that an handle ategorial variables, graphs

or fous on spei� aspets of the data, designed by expertise knowledge

[3℄. Many standard methods for data mining have been generalized to non

vetorial data, reently inluding prototype-based lustering, even though,

in some ases, the hoie of the most relevant dissimilarity remains an open

issue (see [4, 5℄ for a disussion on this topi in the �eld of soial siene).

The reent paper [6℄ provides an overview of several methods that have been

proposed to takle omplex data with neural networks.

In partiular, several extensions of the Self-Organizing Map (SOM) algo-

rithm have been proposed. One approah onsists in extending SOM to ate-

gorial data by using a method similar to Multiple Correspondene Analysis,

[7℄. Another approah uses the median priniple whih onsists in repla-

ing the standard omputation of the prototypes by an approximation in the

original data set. This priniple was used to extend SOM to dissimilarity

data in [8℄. One of the main drawbaks of this approah is that foring the

prototypes to be hosen among the data set is very restritive; in order to

inrease the �exibility of the representation, [9℄ proposes to represent a lass

by several prototypes, all hosen among the original data set. However this

method inreases the omputational time, while prototypes remain restrited

to the original data set and may generate possible sampling or sparsity issues.

An alternative to median-based algorithms relies on a method that is

lose to the standard algorithm used in the Eulidean ase. This method is

based on the idea that prototypes may be expressed as linear ombinations

of the original input data. In kernel SOM framework, this setting is made

natural by the use of the kernel, whih maps the original data into a (large

dimensional) Eulidean spae (see [10, 11, 12℄ for on-line versions and [13℄
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for the bath version). Several kernels may then be used to handle omplex

data suh as strings, nodes in a graph or graphs themselves [14℄. In some

ases, the data are solely desribed by a dissimilarity matrix. [15, 16, 17℄

give neessary and su�ient onditions for a symmetri matrix to be a dis-

tane matrix in an Eulidean spae but, as pointed out by [3℄, the lass of

similarity/dissimilarity that an be embedded in a Eulidean spae is rather

limited and does not aommodate on a number of useful measures already

developed in the literature. In this ase, [18, 19, 20, 21℄ propose to introdue

an impliit �onvex ombination� of the original data in order to extend the

lassial bath versions of SOM to dissimilarity data: this approah impli-

itly uses the embedding of the original data in a pseudo-eulidean spae, as

de�ned in [22℄.

However, bath versions of the SOM algorithm are known, at least for the

standard numerial SOM [23℄, to present several drawbaks suh as poor orga-

nization and strong dependeny on the prototype initialization. This problem

may be partially ountered using PCA or MDS initializations, but when no

good initialization is available, a stohasti (also alled on-line) version of the

algorithm an be very bene�ial. The purpose of the present paper is to intro-

due and justify the on-line version of relational SOM, as already proposed in

[24℄. Suh an approah leads to a better organization of the map. Addition-

ally, taking advantage of the stohasti sheme, relational SOM is extended to

integrate several soures of non homogeneous information by using an adap-

tive onvex ombination of dissimilarities. The weights of eah dissimilarity

are updated during the SOM learning proess by an additional stohasti gra-

dient desent step. In the remaining of this manusript, Setion 2 desribes

the on-line extension of the relational SOM algorithm, already studied in

[24℄, while Setion 3 desribes how this approah an be used to integrate

multiple information oming either from di�erent data sets or from di�erent

dissimilarity measures. Finally, Setion 4 illustrates the approah on simu-

lated and real-world data sets and ompares it with previous literature. Note

that the on-line relational SOM is available in the R [25℄ pakage SOMbrero,

whih an be downloaded on R-Forge [26℄
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2. On-line dissimilarity SOM

Let us reall that the Self-Organizing Map (SOM) algorithm aims at

mapping n input data x1, . . . , xn into a low dimensional grid omposed

of U units. A prototype pu, valued in the same spae as the input data, is

assoiated to eah unit u ∈ {1, . . . , U} of the grid. The grid indues a natural
distane d on the map: for every pair of neurons (u, u′), d (u, u′) is usually
de�ned as the length of the shortest path between u and u′

(although other

topologies are sometimes used, inluding the standard Eulidean distane on

the grid). The algorithm aims at lustering together similar observations and

also at preserving the original topology of the data set on the map (i.e., lose

observations are lustered into lose units on the map, distant observations

are lustered into distant units on the map). In order to do so, an iterative

proess is performed by alternating two steps. The original algorithm for

numerial vetors may be resumed as follows:

• an assignment step where one observation (on-line version) or all ob-

servations (bath version) is/are a�eted to the losest prototype (in

the sense of the Eulidean distane):

f(xi) = arg min
u=1,...,U

‖xi − pu‖,

• a representation step where all prototypes are updated aording to the

new assignment. For the on-line version of the algorithm, this step is

performed by mimiking a stohasti gradient desent sheme:

pnewu = poldu + µH (d (f(xi), u))
(
xi − poldu

)
, (1)

where H is the neighborhood funtion verifying the assumptions H :
R

+ → R
+
, H(0) = 1 and limx→+∞H(x) = 0, and µ is a training

parameter. Generally, H and µ are supposed to be dereasing with the

number of iterations during the training proedure.

The original SOM algorithm desribed above does not posses a ost fun-

tion and is not exatly a gradient desent, at least not in the ontinuous

ase. However, when the size of the neighborhood is �xed and with a modi-

�ed assignment step, [28℄ proved that SOM is minimizing the following energy

funtion:
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E ((pu)u) =

U∑

u=1

∫
δu,f(x)

U∑

l=1

H(d(l, u))‖x− pl‖
2P (dx) ,

where δu,f(x) =

{
1, if f(x) = u
0, otherwise

.

2.1. SOM for dissimilarity data

In the ase where the input data take values in an arbitrary input spae G,
a natural Eulidean struture is not neessarily assoiated with G. Instead,
the dissemblane between the observations an be desribed by a dissimilarity

measure ∆ = (δij)i,j=1,...,n suh that ∆ is non negative (δij ≥ 0), symmetri

(δij = δji) and null on the diagonal (δii = 0). In this ase however, the

assignment step annot be arried out straightforwardly sine the distanes

between the input data and the prototypes are not be diretly omputable.

Several extensions of the SOM algorithm have been proposed in this on-

text: [8℄ proposes the �median SOM� where the prototypes are hosen among

the input data (xi)i in a bath framework. The assignment step is then similar

to the Eulidean framework, with the dissimilarity replaing the Eulidean

norm. The representation step simply �nds the prototypes that minimize

the energy of the map by an exhaustive searh among the input data. [9, 29℄

extend this work by using several observations instead of a unique one for

eah prototype and by proposing a fast implementation of the algorithm.

Nevertheless, hoosing the prototypes among the input data is very restri-

tive and using several observations for eah prototype strongly inreases the

omputational time needed to train the map.

To overome this di�ulty, the solution proposed by [18, 19, 20, 21℄ is to

rely on the pseudo-eulidean framework: indeed, [22℄ pointed out that any

data desribed by a symmetri dissimilarity matrix an be embedded in a

spae onsisting of the orthogonal diret sum of two Eulidean spaes, for

whih the inner produt operation is de�nite positive on the �rst spae and

de�nite negative on the seond. Relying on this framework, and similarly

to the kernel SOM approah [19℄, the prototypes are supposed to be sym-

boli onvex ombinations of the original data (atually, onvex ombinations

of their impliit embedding in the pseudo-eulidean spae): pu ∼
∑

i βuixi
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with

∑
i βui = 1 and βui ≥ 02. If βu denotes the vetor (βu1, . . . , βun), the

�distane� in the assignment step an be written in terms of ∆ and βu only:

δ(xi, pu) ≡∆iβu −
1

2
βT
u∆βu. (2)

where ∆i is the i-th row of ∆ (the formula is justi�ed and proved in

Appendix A). This algorithm, alled relational SOM, was proposed in the

bath framework where the representation step onsists in updating the on-

vex ombination by a mean alulation:

βui =
H(d(f(xi), u))∑
i′ H(d(f(xi′), u))

.

This approah is very similar to the bath kernel SOM desribed in [12,

13℄. In kernel SOM, the Eulidean framework is justi�ed by the de�nition

of a kernel K : G × G → R that impliitly maps the data into a Hilbert

spae where the inner produt is diretly available via the kernel. Atually,

bath kernel SOM and bath relational SOM are equivalent for a dissimilarity

de�ned from the kernel by:

δ(xi, xj) := K(xi, xi) +K(xj , xj)− 2K(xi, xj). (3)

Reiproally, if the dissimilaritymatrix∆ an be embedded in a Eulidean

spae (i.e., if it ful�lls the ondition given in [15, 16, 17℄ whih is that the

matrix with elements sij = (δ(xi, xn)
2 + δ(xj , xn)

2 − δ(xi, xj)
2) /2 is positive,

or, similarly, if the matrix with elements

s(i, j) = −
1

2

(
δ2(xi, xj)−

1

n

n∑

k=1

δ2(xi, xk)−
1

n

n∑

k=1

δ2(xk, xj) +
1

n2

n∑

k,k′=1

δ2(xk, xk′)

)

as proposed in [30℄, is positive), then relational SOM is equivalent to kernel

SOM used with the matrix (sij)ij, whih, in this ase, is a kernel. However,

as explained in [3℄, some useful dissimilarities (e.g., shortest path lengths in

graphs or optimal mathing dissimilarities for sequenes of events, [31, 32℄)

2

Note that this sum has no real meaning, most of the times, as G is not neessarily

equipped with a + operation neither with a multipliation by a salar. It simply impliitly

refers to the + operation in the underlying pseudo-eulidean spae: the formal de�nition

of pu is given in Appendix A.
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do not ful�ll the required onditions allowing them to be embedded in a

Eulidean spae. In these ases, the dissimilarity an be turned into a kernel

using various pre-proessings, as desribed in [33℄ but then, relational SOM

and kernel SOM are no longer idential.

2.2. On-line relational SOM

As explained in [23℄, although bath SOM possesses the nie properties of

being deterministi and of usually onverging in a few iterations, it has several

drawbaks suh as organizing the map rather poorly, produing unbalaned

lasses and being strongly dependent on the initialization. Hene, using

the same ideas as [18, 20℄, we introdue the on-line relational SOM, whih

generalizes the on-line SOM to the ase of dissimilarity data. The proposed

method is desribed in Algorithm 1. In this algorithm, only one observation,

Algorithm 1 On-line relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui suh that β0

ui ≥ 0 and∑n

i β
0
ui = 1.

2: for t=1,. . . ,T do

3: Randomly hoose an input xi

4: Assignment step: �nd the unit of the losest prototype

f t(xi)← arg min
u=1,...,U

((
βt−1
u ∆

)
i
−

1

2
(βt−1

u )T∆βt−1
u

)

5: Representation step: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)

where 1i is a vetor with a single non null oe�ient at the ith position,

equal to one.

6: end for

randomly hosen, is assigned to a unit of the map at eah iteration step. The

representation step is drawn from Equation (1) by using a similar approah

to update the prototypes' oordinates (βui)ui. Note that the onstraints on

(βui)ui are preserved sine:

•
∑

i β
t
ui = 1 (as demonstrated in Appendix B);
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• βt
ui ≥ 0 for any u and i as long as µ(t) is small enough (µ(t)H t

must

simply be smaller than 1).

This latter ondition is easy enough to handle. In our experiments, the

parameters of the algorithm are hosen aording to [34℄: the neighborhood

H t
dereases in a pieewise linear way, starting from a neighborhood whih

orresponds to the whole grid up to a neighborhood restrited to the neuron

itself; µ(t) vanishes at the rate of 1/t.

2.3. Disussion on the algorithm: relations to previous algorithms, omplex-

ity and onvergene

If the dissimilarity matrix is a Eulidean distane, then the on-line rela-

tional SOM is exatly idential to the standard numerial SOM as long as the

prototypes of the original SOM are initialized in the onvex hull of the origi-

nal data (i.e., the initial prototypes an be written p0u =
∑

i β
0
uixi). Similarly,

the on-line relational SOM is idential to on-line kernel SOM as desribed in

[10, 11, 12℄ for a dissimilarity de�ned from a kernel K by Equation (3) or if

the dissimilarity ful�lls one of the onditions in [15, 16, 17℄.

Moreover, if one wants to generalize dissimilarities to non-symmetri re-

lations (suh as, for example, graph-based omparisons of protein �ngerprint

graphs), a dissimilarity matrix omputed as the half-sum of pairwise relations

may be onsidered as the input for the algorithm.

In order to illustrate the performanes of the on-line relational SOM om-

pared to the bath implementation, 500 points are onsidered, sampled ran-

domly from the uniform distribution in [0, 1]2. The dissimilarity is omputed

as the length of the shortest path in the graph indued by the Delaunay

triangulation (this graph is displayed in Figure 1). Note that this dissim-

ilarity is not exatly equivalent to the Eulidean R
2
-metri, sine it is not

even Eulidean. The bath version of relational SOM and the on-line version

of relational SOM were trained on idential 10 × 10 grid strutures. The

algorithms were trained either with idential initializations, or with a PCA

initialization

3

for the bath SOM, whih is the standard initialization used to

alleviate the initialization dependeny of this algorithm. Results are available

in Figure 1 and learly show a muh better organization of the prototypes

in the �nal grid provided by the on-line version of the algorithm. When the

3

Dissimilarity PCA was used and then properly re-saled to satisfy the ondition∑
i
βui = 1.
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Figure 1: 500 points sampled from the uniform distribution in [0, 1]2 and their Delaunay

graph (top left) and map organizations obtained by relational on-line SOM (top right)

and relational bath SOM (bottom left) with random initialization and by relational bath

SOM with dissimilarity-PCA initialization (bottom right).

prototypes are initialized with a PCA, the organization of the map produed

by the bath kernel SOM is muh better but still slightly worse than the one

obtained with the on-line version and a random initialization. This visual

e�et is on�rmed when alulating the topographi error [35℄: this error

quanti�es the ontinuity of the map with respet to the input spae metri

by ounting the number of times the seond best mathing unit of a given

observation belongs to the diret neighborhood of the best mathing unit for

this observation. A topographi error equal to 0 means that all seond best

mathing units are in the diret neighborhood of the winner neurons and

thus that the original topology of the data is well preserved on the map. In

this simple example, it is equal to 0.01 for the on-line relational SOM, to

0.176 for the bath relational SOM with PCA initialization and to 0.264 for

the bath relational SOM with random initialization. Hene, the lassial

initialization dependeny of the bath version of the algorithm, as already
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shown in [23℄ also holds for the relational approah. In partiular, when

no good initialization is present (i.e., when PCA or MDS are bad initializa-

tion strategies), the on-line version an then be very bene�ial. Finally, the

omplexity of the on-line and bath versions are similar (of order O(Un2))
with usually a smaller number of iterations needed to stabilize the bath ver-

sion: the onvergene of the bath version is attained with quadrati speed

while the on-line version onverges with a linear speed. However, the better

organization of the map ompensates for this small loss in omputational

time. Finally, let us remark that formally speaking, in the pseudo-Eulidean

setting, the onvergene of both algorithms (on-line and bath) is even not

guaranteed (saddle points an be present instead of loal optima, as pointed

out in [21℄) but, in pratial appliations, divergene was never observed.

3. Integrating multiple dissimilarities

In some spei� appliations, the user is interested in simultaneously an-

alyzing several soures of information: a graph together with additional in-

formation known on its nodes, numerial variables measured on individuals

together with fators desribing these individuals... This situation is often

referred to as �multiple view� data and suh data are quite ommon in a

number of �elds: gene lustering from expression pro�les and ontology infor-

mation [36℄ in biology, node lustering in a soial network taking into aount

attributes that desribe the nodes [37, 1℄ in soial sienes, and moleules

lustering from �ngerprints and spatial strutures [38℄ in hemistry. In other

spei� appliations, the data set an be desribed by several dissimilarities,

eah enoding spei� features of the data but none of them being aknowl-

edged as more informative than the others: in soial sienes for instane,

the hoie of a good dissimilarity to desribe the resemblane between two

event time series is still an open issue [4, 5℄.

The ombination of all soures of information or of several dissimilarities is

a hallenging problem that aims at inreasing the relevane of the lustering.

In lustering, this issue has already been takled by di�erent approahes:

some rely on lustering ensembles, ombining together the lusterings ob-

tained from eah view or from eah dissimilarity into a onsensus lustering

[39℄. A more omplex strategy, desribed in [40℄, iteratively updates the dif-

ferent lusterings using a global log-likelihood approah until they onverge

to a onsensus. Other authors propose to onatenate all data/views prior

to the lustering. If kernels are available, this method is known as multi-

10



ple kernel lustering: the di�erent kernels are ombined by using a onvex

ombination and the oe�ients of the onvex ombination are optimized to-

gether with the lustering [41, 42℄. In a similar way, if the data are desribed

by numerial variables belonging to di�erent feature groups, [43℄ proposes

to weight eah group and to optimize simultaneously the lustering and the

weights of the groups.

For the SOM algorithm as well, a few artiles takle related issues: in

partiular, [44℄ ombines numeri and binary variables to produe a single

map by optimizing two quantization energies in parallel and [1, 2℄ use a

multiple kernel framework to integrate various information.

In the present setion, we use a similar approah by ombining di�erent

dissimilarities in a onvex ombination. We propose an algorithm whih

learns an optimal ombination on-line, by minimizing the energy funtion.

3.1. Computing a multiple dissimilarity

Suppose now that the observations x1, . . . , xn are not desribed by a

single dissimilarity matrix ∆, but by D dissimilarity matries ∆
1
, . . . , ∆

D
,

where ∆d =
(
δd(xi, xj)

)
ij
. The dissimilarities an be either di�erent dissimi-

larities omputed on the same data or dissimilarities omputed from di�erent

variables measured on the same individuals (e.g., a dissimilarity that mea-

sures proximities between nodes in a graph and a dissimilarity that measures

proximities between the node labels, see Setion 4.3 for an example).

Similarly to the multiple kernel approah desribed in [45℄ or in [1℄ (for

multiple kernel SOM), we propose to ombine all the dissimilarities into a

single one, de�ned as a onvex ombination:

δαij =

D∑

d=1

αdδ
d
ij (4)

where αd ≥ 0 and
∑D

d=1 αd = 1. In the Eulidean framework, this approah is

stritly equivalent to the multiple kernel SOM approah beause ‖xi−xj‖
2
d =

〈xi − xj , xi − xj〉d (multiple kernel is a onvex ombination of dot produts

whereas Equation (4) is based on a onvex ombination of squared distanes).

11



3.2. On-line multiple relational SOM

If the (αd) are given, relational SOM based on the dissimilarity introdued

in Equation (4) aims at minimizing (over (βu)u) the following energy funtion

E((βu)u, (αd)d) =

U∑

u=1

n∑

i=1

H (d (f(xi), u)) δ
α (xi, pu(βu)) ,

where δα (xi, pu(βu)) is de�ned as in Equation (2) by

δα (xi, pu(βu)) ≡∆
α
i βu −

1

2
βT
u∆

αβu (5)

with ∆
α =

∑
d αd∆

d

When there is no a-priori on the (αd)d, we propose to inlude the opti-

mization of the onvex ombination within the on-line algorithm whih trains

the map. This idea is similar to the one proposed in [46℄ for optimizing a ker-

nel parameter in vetor quantization algorithms. More preisely, a stohasti

gradient desent step is added to the original on-line relational SOM algo-

rithm to optimize the energy E((βui)ui, (αd)d), over both (βui)ji and (αd)d.
To perform the stohasti gradient desent step on the (αd), the omputation

of the derivative of

E|xi
=

U∑

u=1

H (d (f(xi), u)) δ
α (xi, pu(βu))

(the ontribution of the randomly hosen observation (xi)i to the energy)

with respet to α is needed. Sine

∂

∂αd

[δα(xi, pu)] = δd(xi, pu),

we have

Did =
∂E|xi

∂αd

=

U∑

u=1

H (d (f(xi), u))

(
∆

d
i βu −

1

2
βT
u∆

dβu

)
.

Following an idea similar to that of [45℄, the SOM is trained by perform-

ing, alternatively, the standard steps of the SOM algorithm (i.e., assignment

and representation steps) and a gradient desent step for the (αi)i. The

methodology is desribed in Algorithm 2.

12



Algorithm 2 On-line multiple dissimilarity SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui suh that β0

ui ≥ 0 and∑n

i=1 β
0
ui = 1.

2: For all d = 1, . . . , D, initialize α0
d ∈ [0, 1] st

∑
d α

0
d = 1. return δα,0 ←∑

d α
0
dδ

d
.

3: for t=1,. . . ,T do

4: Randomly hoose an input xi

5: Assignment step: �nd the unit of the losest prototype

f t(xi)← arg min
u=1,...,U

δα,t−1 (xi, pu(βu))

where δα,t−1 (xi, pu(βu)) is de�ned as in Equation (5).

6: Representation step: update all prototypes aording to the new as-

signment: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H (d (f(xi), u))
(
1i − βt−1

u

)

7: Gradient desent step: update the onvex ombination parameters:

∀ d = 1, . . . , D,

αt
d ← αt−1

d + ν(t)Dt
d

where Dt
d is the desent diretion and update δα,t

δα,t ←
∑

d

αt
dδ

d.

8: end for

To ensure that the gradient step respets the onstraints on α (αd ≥ 0
and

∑
d αd = 1), the following strategy is used: similarly to [47, 48, 45℄, the

gradient

(
∂Et−1|xi

∂αd

)

d
is redued and projeted suh that the non-negativity of

α is ensured. The following modi�ed desent step is thus used:

D̃d =





0 if αd = 0 and Dd −Dd0 > 0
−Dd +Dd0 if αd > 0 and d 6= d0∑

d6=d0, αd>0 (Dd −Dd0) otherwise

The desent step ν(t) is dereased with the standard rate of ν0/t with an

initial ν0 small enough to ensure the positivity onstraint on (αd)d.

13



4. Appliations

In this setion, several appliations, on simulated or real-life data sets,

illustrate the performanes of the proposed methods. Setion 4.1 ompares

on-line and bath relational SOM on a DNA baroding data set, Setion 4.2

ompares the use of dissimilarities and kernels for mapping two politial

graphs into a grid, Setion 4.3 illustrates the e�ieny of the use of a multiple

dissimilarity approah on a simulated data set and, �nally, Setion 4.4 applies

the multiple relational SOM to a large data set of ategorial time series and

shows that the multiple relational SOM approah an be used to interpret

whih dissimilarities produe the most relevant lusters.

4.1. Comparison between on-line and bath relational SOM on a geneti data

set

This �rst experiment aims at providing a omparison between on-line

and bath relational SOM. It is performed on a data set that ontains 465

input data issued from ten unbalaned sampled speies of Amazonian butter-

�ies. This data set was previously used by [49℄ to demonstrate the synergy

between DNA baroding and morphologial-diversity studies. The notion

of DNA baroding omprises a wide family of moleular and bioinformatis

methods aimed at identifying biologial speimens and assigning them to a

speies. Aording to the vast literature published during the past years on

the topi, two separate tasks emerge for DNA baroding: on the one hand,

assign unknown observations to known speies and, on the other hand, dis-

over undesribed speies, [50℄. The seond task is usually approahed with

the Neighbor Joining algorithm [51℄ whih onstruts a tree similar to a

dendrogram. When the sample size is large, the trees beome rapidly un-

readable. Moreover, they are quite sensitive to the order in whih the input

data are presented. Unsupervised learning and visualization methods are

used to a very limited extent by the DNA baroding ommunity, although

the information they bring may be quite useful. Self-organizing maps provide

a visualization of the data while bringing out lusters or groups of lusters

that may orrespond to yet unknown speies.

DNA baroding data are omposed of sequenes of nuleotides, i.e. se-

quenes of �a�, ��, �g�, �t� letters in high dimension (hundreds or thousands of

sites). Hene, sine the data are not Eulidean, dissimilarity-based methods

appear to be more appropriate. Spei� distanes and dissimilarities suh as

the Kimura-2P [52℄ are usually omputed. Reently, bath median SOM was

14



tested in [53℄ on several data sets, amongst whih the Amazonian butter�ies.

Although median SOM provided enouraging results, two main drawbaks

emerged. First, sine the algorithm was run in bath, the organization of the

map was generally poor and highly depending on the initialization. Seond,

sine the algorithm alulates a prototype for eah luster among the data

set, it does not allow for empty lusters. Thus, the existene of speies or

groups of speies was di�ult to aknowledge. The use of on-line relational

SOM overomes these two issues. Figure 2 ontains the maps obtained with

median SOM and relational SOM with PCA initialization, both trained in

bath versions

4

and Figure 3 illustrates the mapping produed with the on-

line relational SOM. The three algorithms were run with idential �xed seeds

for the random generators. The lustering quality of median SOM is poor,

sine several lusters mix together several speies. On the ontrary, relational

SOM allows for empty lusters and thus produes a better mapping, from

a lustering point of view: the only mixing lass orresponds to a labeling

error. Moreover, the empty ells help separating the main groups of speies.

Clustering may thus be useful in addressing misidenti�ation issues.

Topographi errors were omputed for the three mappings in order to

assess the quality of the projetion. For the online algorithm, the error is

0.0022, for relational SOM with PCA initialization we obtained 0.3682, while

the error of median SOM is 0.3094. Hene, the stohastiity of the on-line

algorithm allowed for a better organization of the map, ompared with bath

algorithms.

In Figure 3b, distanes with respet to the nearest neighbors were om-

puted for eah node. The distane between two nodes/ells is omputed as

the mean dissimilarity between the observations within eah lass. A polygon

is drawn within eah ell with verties proportional to the distanes to its

neighbors. If two neighbor prototypes are very lose, then the orresponding

verties are very lose to the edges of the two ells. If the distane between

neighbor prototypes is very large, then the orresponding verties are far

apart, lose to the enter of the ells.

4

relational bath SOM with random initialization was also tested but, sine the results

were worse than the ones obtained with PCA initialization, they are not shown in this

artile.
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(a) (b)

Figure 2: Speies diversity distribution by luster (radius proportional to the size of the

luster): Median bath SOM (a) and Relational bath SOM with PCA initialization (b).

(a) (b)

Figure 3: On-line relational SOM results for Amazonian butter�ies: (a) Speies diversity

distribution by luster (radius is proportional to the luster size. (b) Distanes between

prototypes.

4.2. On-line relational SOM and on-line kernel SOM to deipher the stru-

ture of politial networks

This present setion's purpose is to give a omparison of the performanes

obtained with relational SOM when used with various metris. More pre-

isely, we will show that for strutural data suh as graphs, a kernel is not

always the most relevant way to extrat information from the graph struture,

ompared to, i.e., the simple similarity based on the length of the shortest

path between two nodes.

The data used in this setion ome from two famous data sets pertaining

to the US politis. The �rst data set is a graph where the nodes are 105

Amerian politial books, all published around the presidential eletion of
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2004 and sold by Amazon.om. The edges of this graph enode the fat that

two books were o-purhased by a ommon buyer

5

. All nodes are labeled

aording to their politial a�liation (onservative, liberal or neutral), and

this information will be used to validate the results a posteriori.

The seond data set is a graph representing the US politis blogosphere,

reorded in 2004, for the same presidential eletion as the previous one, by

Adami and Glane [54℄. This data set ontains 1 222 nodes whih are po-

litial blogs and 16 714 edges that represent a hyperlink between two blogs

6

.

Again, additional information pertaining the politial preferene of the blog is

also provided (here only onservative or liberal). Both graphs are represented

in Figure 4 by a Fruhterman and Reingold [55℄ fore direted plaement al-

gorithm and nodes are olored aording to the politial a�liation of the

book or of the blog.

Figure 4: Politial books (left) and blogs (right) networks. Nodes are labeled aording

to the politial orientation of the book or of the blog: pink is for onservative, blue for

liberal and green for neutral.

Relational SOM was performed to projet the nodes of the two graphs

on a square grid having dimension 5× 5 (books) and 10× 10 (blogs). Three

di�erent dissimilarities were used to perform this task:

5

This graph was built by Valdis Krebs and is available for downloading at

http://www-personal.umih.edu/~mejn/netdata/polbooks.zip.

6

The original graph was direted but we only used undireted edges to perform our

analysis.

17

http://www-personal.umich.edu/~mejn/netdata/polbooks.zip


• the length of the shortest path between two nodes. Note that, in gen-

eral, the length of the shortest path is not a Eulidean distane: for

the two graphs desribed in this setion, the ondition of [16℄ is not

satis�ed;

• a dissimilarity de�ned as the square of the distane indued by the

heat kernel (K = e−γL
where L is the Laplaian, [56℄), with parameters

γ = 0.1 and 1. In this ase, relational SOM is equivalent to kernel SOM

as desribed in [18, 20℄;

• a dissimilarity de�ned as the square of the distane indued by the

ommute time kernel [57℄.

The performanes of the tested methods were assessed using three riteria:

the modularity of the obtained partition, the neurons' purity (ompared to

the politial labels) and the topographi error of the map. The modularity

[58℄ is a measure of quality of a partition of the nodes in a graph:

Q =
U∑

u=1

∑

i,j: f(xi)=f(xj)=u

(
Eij −

didj
2m

)

where Eij = 1 i� there is an edge between nodes xi and xj , di is the degree
of node xi and m is the number of edges in the graph. The best partition

orresponds to the largest modularity. The neurons' purity is a measure

of the onsisteny of the lustering with respet to the politial labels: it

ounts the frequeny of the politial labels of the nodes that are equal to

the majority politial label of the node's luster. The loser to 1 the purity

is, the better the lustering is. The last quality riterium, the topographi

error of the map [35℄, quanti�es the ontinuity of the map, with respet to

the input-spae metri as already explained in Setion 2.3. Notie that, as it

omputes the seond best mathing unit, the topographi error depends on

the metri of the input spae itself and tells us if this metri is well preserved

on the map.

The results are given in Table 1. In addition, Figures 5 (books) and 6

(blogs) display two of the maps obtained for eah data set. First note that

the modularity obtained with the SOM algorithm should not be ompared

with that of a standard node lustering algorithm: the number of lusters

used in suh maps is often muh larger than the optimal number of lusters for

the modularity (for instane, the optimal modularity found by the algorithm
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Dissimilarity Shortest path Heat kernel Heat kernel Commute time

length γ = 0.1 γ = 1 kernel

Politial books

modularity 0.25 -0.05 0.08 0.27

purity 0.88 0.61 0.72 0.89

topo. error 0.048 0.133 0.038 0.038

Politial blogs

modularity 0.08 0.02 0.00 0.00

purity 0.93 0.89 0.79 0.57

topo error 0.303 0.047 0.322 0.899

Table 1: Modularity, neurons' purity and topographi error obtained for the data sets

�politial books� and �politial blogs� by relational and kernel SOM algorithms.

desribed in [59℄ gives only 10 lusters, that should be ompared to the 100

lusters of the map). Nevertheless, this measure of the lustering quality is

still valid for omparing di�erent dissimilarities.

For the politial books data set, the best map is obtained by using the

on-line kernel SOM algorithm with the ommute time kernel. The on-line

relational SOM with the shortest path dissimilarity obtains omparable per-

formane but the heat kernel gives poor results, whatever the value of γ.
For the politial blogs, the on-line relational SOM gives good results and

manages to disriminate the two groups of blogs quite well, while its topo-

graphi error is rather large. On the other hand, the kernel SOM with the

heat kernel (γ = 0.1) has a muh better topographi error, while it badly

disriminates the labels and produes a bad lustering of the nodes of the

graph on the map (as measured by the modularity): this an be explained

by the fat that, even though the map properly represents the topographi

organization of the input spae, the metri used to represent the data may

not be the most aurate to emphasize some partiular features of the data

that an be of a major interest for the user.

In a seond step, a hierarhial lustering of the prototypes was per-

formed. Using the symboli representation of the prototypes as pu ∼∑n

i=1 βuixi, the dissimilarity between two prototypes an be expressed as:

δ(pu, pu′) := −
1

2
(βu − βu′)T ∆(βu − βu′) (6)

and used as an input in the hierarhial lustering algorithm (see [20℄, The-
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Figure 5: Politial books. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the ommute

time kernel (right).

orem 1, for a justi�ation of this formula). Only three and two lusters were

kept for, respetively, the politial blogs and the politial books data sets

in order to try to retrieve the original labels. The resulting lusters are dis-

played in Figures 7 and 8. Moreover, the lasses' purity and modularity are

given in Table 2.

Dissimilarity Shortest path Heat kernel Heat kernel Commute time

length γ = 0.1 γ = 1 kernel

Politial books

modularity 0.50 -0.02 -0.00 0.41

lasses' purity 0.84 0.49 0.47 0.76

Politial blogs

modularity 0.39 0.04 -0.00 0.00

lasses' purity 0.91 0.52 0.58 0.52

Table 2: Modularity and purity of the lasses obtained by a hierarhial lustering of the

prototypes, for the data sets �politial books� and �politial blogs�.

As expeted, hierarhial lustering tends to slightly derease the lasses'

purity (ompared to the neurons' purity) and to strongly inrease the mod-

ularity. But it also a�ets whih of the dissimilarities seems to represent the

data better: for both data sets, the shortest path dissimilarity overomes

the dissimilarities based on kernels. This shows that the use of a kernel is
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Figure 6: Politial blogs. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel

γ = 0.1 (right).

not always the best possible hoie for omputing similarities/dissimilarities

between observations and that allowing the use of a larger family of dissimi-

larities an be useful in some ases.

4.3. Multiple relational SOM on simulated data

In this setion, a simple example is used to test the algorithm and il-

lustrate its behavior in the presene of omplementary information. 200

observations, divided into 8 groups (indexed from 1 to 8 in the following),

were generated using three di�erent types of data:

• an unweighted graph, simulated similarly as the �planted 3-partition
graph� desribed in [60℄. The nodes of the groups 1 to 4 and the nodes

of the groups 5 to 8 ould not be distinguished in the graph struture:

the edges within these two sets of nodes were randomly generated with

a probability equal to 0.3. The edges between these two sets of nodes

were randomly generated with a probability equal to 0.01;

• numerial data that were two dimensional Gaussian vetors. The vari-

ables orresponding to observations of odd groups were simulated by

Gaussian vetors with mean (0, 0) and independent omponents having

a variane equal to 0.3 and the variables orresponding to observations

of even groups were simulated by Gaussian vetors with mean (1, 1)
and independent omponents having a variane equal to 0.3;
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Figure 7: Politial books. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the ommute

time kernel (right).

• a fator with 2 levels. Observations of groups 1, 2, 5, and 7 were

a�eted to the �rst level and observations of the other groups to the

seond level.

Hene, only the ombined knowledge of the three data sets gave aess

to the eight original groups. The multiple relational SOM algorithm was

applied to this problem with the shortest path distane for the graph, the

standard Eulidean distane for the numerial data and Die's distane for

the fator variable (equal to 0 if the fators are idential between the two

observations and to 1 if not). The algorithm was ompared with

• a multiple kernel SOM approah as desribed in [2℄ where the kernels

used were the ommute time kernel [57℄ for the graph and the Gaussian

kernel for both the other data sets (the fator was reoded as a numeri

variable using its disjuntive form). The parameter of the Gaussian

kernel was set as reommended in [61℄;

• a standard relational SOM approah using one of the three data sets

only. It was also ompared to the dissimilarity SOM using numerial

and fator data or all the three data sets but used as if they were issued

from the same data set with a Eulidean distane (when the graph was

added to the numerial and fator data, it was under the form of its

adjaeny matrix).
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Figure 8: Politial blogs. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel

γ = 0.1 (right).

The omparison was performed on 100 di�erent data sets generated as pre-

viously desribed.

The performanes of the di�erent approahes were ompared using the

normalized mutual information [62℄ with respet to the original lasses, the

average node purity, taking again as a referene the original lasses, and the

topographi error [35℄. The �rst two quality measures quantify the adequa-

tion between the original lasses and the lustering provided by the SOM.

The node purity has values between 0 and 1 and is equal to 1 when the two

partitions are idential. The last quality measure, the topographi error, does

not depend on the original lass but it quanti�es the ontinuity of the map,

with respet to the input spae metri. The results are given in Figure 9,

whih displays the distributions of the normalized mutual information, the

nodes' purity and the topographi error, over the 100 data sets. Figure 10

provides examples of resulting maps.
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Figure 9: Normalized Mutual Information (top left), neurons' purity (top right) and to-

pographi error (bottom) of multiple relational SOM, multiple kernel SOM and relational

SOM used with all or two data sets (num&fa) simply merged in a single data set or with

a single data set (graph, numeri or fator).

Taking into aount the lustering quality (normalized mutual informa-

tion), the node purity and the topographi quality, the multiple relational

SOM outperforms the other methods. The di�erene between the use of the

shortest-path dissimilarity and a kernel for graph in a similar multiple setting

is small but still signi�ant (with p-values smaller than 10−9
for Wiloxon

paired tests).
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Note that the normalized mutual information gives here a pessimisti vi-

sion of the results beause it penalizes the fat that the original lusters are

separated into several neurons on the grid. This explains the good perfor-

mane (despite their large variability), in term of normalized mutual informa-

tion, of the grid built from the numeri variables and the fator only beause

this latter map ontains muh more empty lusters as shown in Figure 10.

On the ontrary, the example of the map resulting from on-line multiple rela-

tional SOM in Figure 10 shows a good lassi�ation and a good organization

aording to the three types of information: the eight groups are almost

perfetly distinguished by the algorithm.

Also note that the topographi error is not an optimal way to ompare

the results obtained with data sets that do not ontain the same amount of

information: indeed, the very good topographi error obtained by the map

trained from the numeri data only or the fator only simply means that

the topographi properties of these data is well preserved on the map but

this annot be ompared to the multiple relation SOM, the multiple kernel

SOM or the map trained with all data and a standard SOM: these maps are

supposed to preserve the topographi properties of all three sorts of data,

whih is a harder task than preserving the topographi property of only one

sort (numeri, fator, graph) of data. In this ase, merging all data in a single

data set whih is then passed as an input to a numeri SOM leads to a very

bad topographi error (approximately 30 times larger than the one obtained

with multiple relational SOM or multiple kernel SOM).

The evolution of the α, shown in Figure 10 is also interesting: the Die's

distane, whih is the only similarity measure based on a non noisy set of data

obtains larger weights than the other two dissimilarities. This is onsistent

with the fat that these data are indeed the best of the three data sets to

distinguish between the original lusters: as shown in Figure 9, the map

based on the fator is better in terms of normalized mutual information than

the ones based on the numeri variables or on the graph only (its node purity

is very low beause it perfetly distinguished the data into two lusters where

four original lusters are equally mixed).
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Graph Numerial variables

α evolution multiple rSOM

rSOM (simple) rSOM

with numeri variables and fator with all three data sets

Figure 10: Summary of the experiment: the original graph and the original distri-

bution of the numerial variables is given at the top of the �gure; multiple rSOM results

(seond row) with the evolution of the α and the resulting map (disks have an area pro-

portional to the number of observations and are olored aording to the distribution of

the original lasses in the orresponding neuron); bottom: maps obtained using numeri

variables and fator merged in a single data set and a simple Eulidean distane (left) and

using all three data sets but a simple Eulidean distane.
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4.4. Multiple relational SOM on real data

The last example illustrates multiple relational SOM on data related to

shool-to-work transitions. We used the data in the survey �Generation 98�

7

.

Aording to the Frenh National Institute of Statistis (INSEE), 22.7% of

young people under 25 were unemployed at the end of the �rst semester

2012.

8

Hene, it is ruial to understand how the transition from shool to

employment or unemployment is ahieved, in the urrent eonomi ontext.

The data set ontains information on 16 040 young people having graduated

in 1998 and monitored during 94 months after having left shool. The labor-

market statuses have nine ategories, labeled as follows: permanent-labor

ontrat, �xed-term ontrat, apprentieship ontrat, publi temporary-

labor ontrat, on-all ontrat, unemployed, inative, military servie, ed-

uation. The following stylized fats are highlighted by a �rst desriptive

analysis of the data as shown in Figure 11:

• permanent-labor ontrats represent more than 20% of all statuses after

one year and their ratio ontinues to inrease until 50% after three years

and almost 75% after seven years;

• the ratio of �xed-terms ontrats is more than 20% after one year on

the labor market, but it is dereasing to 15% after three years and then

seems to onverge to 8%;

• almost 30% of the young graduates are unemployed after one year. This

ratio is dereasing and beomes onstant, 10%, after the fourth year.

The dissimilarities between sequenes were omputed using optimal math-

ing (OM). Also known as �edit distane� or �Levenshtein distane�, optimal

mathing was �rst introdued in biology by [31℄ and used for aligning and

omparing sequenes. In soial sienes, the �rst appliations are due to [32℄.

The underlying idea of optimal mathing is to transform one sequene into

another using three possible operations: insertion, deletion and substitution.

A ost is assoiated to eah of the three operations. The dissimilarity between

7

available thanks to Génération 1998 á 7 ans - 2005, [produer℄ CEREQ, [di�usion℄

Centre Maurie Halbwahs (CMH)

8

All omputations were performed with the free statistial software environment R

(http://ran.r-projet.org/, [25℄). The graphial illustrations were arried out using

the TraMineR pakage [63℄.
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Figure 11: Labor market struture

sequenes is then omputed as the ost assoiated to the smallest number

of operations whih allows to transform the sequenes into eah other. The

method seems simple and relatively intuitive, but the hoie of the osts is a

deliate operation in soial sienes. This topi is subjet to lively debates in

the literature [4, 5℄ mostly beause of the di�ulties to establish an expliit

and sound theoretial frame.

In our appliation, all areer paths have the same length, the status of the

graduate students being observed during 94 months. Hene, we suppose that

there are no insertions or deletions and that only the substitution osts have

to be de�ned for OM metris. Among optimal-mathing dissimilarities, we

seleted three dissimilarities: the OM with substitution osts omputed from

the transition matrix between statuses as proposed in [64℄, the Hamming

dissimilarity (HAM, no insertion or deletion osts and a substitution ost

equal to 1) and the Dynami Hamming dissimilarity (DHD as desribed in

[65℄).

In order to identify the role of the di�erent dissimilarities in extrating

typologies, we onsidered several samples drawn at random from the data.

For eah of the experiments below, 50 samples ontaining 1 000 input se-

quenes eah were onsidered. In order to assess the quality of the maps, two

indexes were omputed: the quantization error for quantifying the quality of

the lustering and the topographi error for quantifying the quality of the

mapping, [66℄. These quality riteria all depend on the dissimilarities used

to train the map but the results are made omparable by using normalized

dissimilarities.
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Metri OM HAM DHD

α-Mean 0.43111 0.28459 0.28429

α-Std 0.02912 0.01464 0.01523

Metri OM HAM DHD Optimally-tuned α
Quantization error 92.93672 121.67305 121.05520 114.84431

Topographi error 0.07390 0.08806 0.08124 0.05268

Table 3: Preliminary results for three OM metris (average over 50 random subsamples):

Optimally-tuned α (top table) and Quality riteria for the SOM lustering (bottom table).

The results are listed in Table 3. Aording to the mean values of the

α's, the three dissimilarities ontributed to extrating typologies. The Ham-

ming and the dynamial Hamming dissimilarities have similar weights, while

the OM with ost-matrix de�ned from the transition matrix has the largest

weight. The mean quantization error omputed on the maps trained with

the three dissimilarities optimally ombined is larger than the quantization

error omputed on the map trained with the OM metri only. On the other

hand, the topographi error is improved in the mixed ase. In this ase, the

joint use of the three dissimilarities provides a trade-o� between the quality

of the lustering and the quality of the mapping. The results on�rm the

di�ulty to de�ne adequate osts in optimal mathing and the fat that the

metri has to be hosen aording to the aim of the study: building typologies

(lustering) or visualizing data (mapping).

Finally, multiple rSOM was trained on the entire data set. The �nal

map is illustrated in Figure 12. Several typologies emerge from the map: a

fast aess to permanent ontrats (lear blue), a transition through �xed-

term ontrats before obtaining stable ones (dark and then lear blue), a

holding on prearious jobs (dark blue), a publi temporary ontrat (dark

green) or an on-all (pink) ontrat ending at the end by a stable one, a long

period of inativity (yellow) or unemployment (red) with a gradual return

to employment. The mapping also shows a progressive transition between

trajetories of exlusion on the west and quik integration on the east. A

more detailed study of this data set is available in [67℄.
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Figure 12: Final map obtained with the OM dissimilarities

5. Conlusion

An on-line version of relational SOM is introdued in this paper. It

ombines the standard advantage of the stohasti version of SOM (better

organization) with relational SOM, whih is able to handle data desribed

by dissimilarities. This approah is extended to the ase where several dis-

similarities are available for the initial data set. Online multiple relational

SOM handles several dissimilarities by ombining them in an optimal fashion.

The algorithm shows good performanes, ompared to alternative methods,

in projeting data desribed by numerial variables, by ategorial variables

or by relations and is helpful to understand whih dissimilarity is the most

relevant when several ones are available. However, in its multiple dissimilar-

ity version, the main drawbak of the proposed relational SOM algorithm is

related to the omputation time: a sparse version should be investigated to

allow us to handle very large data sets.
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Appendix A. Pseudo-eulidean framework and justi�ation of

Equation 2

The proof below an be derived diretly from Theorem 1 of [20℄. It is

given in details here, for the sake of larity.

As explained in [22, 3℄, if δ is a symmetri dissimilarity matrix, then, there

exists two Eulidean spaes E and F , with positive de�nite salar produts,

and a mapping φ : x ∈ G → (φ|E(x), φ|F(x)) ∈ E ⊗ F suh that

δ(xi, xj) = ‖φ|E(xi)− φ|E(xj)‖
2
E − ‖φ|F(xi)− φ|F(xj)‖

2
F . (A.1)

Hene, supposing that pu an be written as pu =
∑

i βui(φ|E(xi), φ|F(xi))
(whih, in the text of the artile is written

∑
i βuixi for the sake of simpliity),
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then the right hand side of Equation (2) an be re-written as:

∆iβu −
1

2
βT
u∆βu =

∑

l

βulδ(xl, xi)−
1

2

∑

ll′

βulβul′δ(xl, xl′) (A.2)

=

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
−

[
∑

l

βul‖φ|F(xi)− φ|F(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|F(xl)− φ|F(xl′)‖
2
F .

]

But, using that

∑
l βul = 1, we obtain

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E −

1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
=

‖φ|E(xi)‖
2
E − 2

∑

l

βul〈φ|E(xi), φ|E(xl)〉E +
∑

l

βul‖φ|E(xl)‖
2
E +

−
1

2

∑

l

βul‖φ|E(xl)‖
2
E −

1

2

∑

l

βul‖φ|E(xl)‖
2
E +

∑

l

∑

l′

βulβul′〈φ|E(xl), φ|E(xl′)〉E =

‖φ|E(xi)−
∑

l

βulφ|E(xl)‖
2
E ,

whih, injeted into Equation (A.2), gives

∆iβu −
1

2
βT
u∆βu = ‖φ|E(xi)−

∑

l

βulφ|E(xl)‖
2
E −

‖φ|F(xi)−
∑

l

βulφ|F(xl)‖
2
F

whih is the distane, in E ⊗ F , indued by the pseudo-norm de�ned in

Equation (A.1), between (φE(xi), φF(xi)) and pu.�
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Appendix B. Proof that

∑
l
βt

ul
= 1 at any step t of the algorithm

We prove here that

∑
l β

t
ul = 1, ∀ t ≥ 0. Noting that the property is

veri�ed for t = 0, let us suppose that for a given t, we have

∑
l β

t
ul = 1.

Then,

βt+1
ul =

{
βt
ul + µ(t)H t(d(f t(xi), u))(1− βt

ul) if i = l
βt
ul − µ(t)H t(d(f t(xi), u))β

t
ul otherwise.

and thus, using

∑
l β

t
ul = 1, we have

∑

l

βt+1
ul =

∑

l

βt
ul + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u))

t∑

ul

βt
ul

= 1 + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u)) = 1.�

Appendix C. Equivalene between relational SOM, kernel SOM

and standard SOM

This appendix shows that

1. if (xi) take values in a Eulidean spae and if the dissimilarity δ is the

Eulidean distane in this spae, then the on-line version of relational

SOM as presented in Algorithm 1 is exatly equivalent to the on-line

version of the standard SOM in this spae;

2. if the dissimilarity δ is omputed from a kernel K by Equation (3),

then the on-line version of relational SOM is exatly equivalent to the

on-line version of the kernel SOM, as desribed in [12℄.

Let us �rst prove the �rst part of the assertion: if the prototypes are

initialized in the onvex hull of (xi) then, they an all be written p0u =∑
i β

0
uixi. As already demonstrated in Appendix A, the assignment step of

the on-line relational SOM minimizes ∆iβu−
1
2
βT
u∆βu whih is equal to the

squared distane between xi and pu in the Eulidean spae and proves that

the assignment step is idential to the one of the standard SOM.

Then, on-line relational SOM updates the βt
ui by

βt
u = βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)
.

Multiplying eah βt
ul by xl gives

xlβ
t
ul =

{
xlβ

t−1
ul (1− µ(t)H t(d(f t(xi), u))) if l 6= i

xiβ
t−1
ui + µ(t)H t(d(f t(xi), u))

(
xi − βt−1

ui

)
if l = i

,

39



and, by summing over l, leads to

∑

l

βt
ulxl =

∑

l

βt−1
ul xl + µ(t)H t(d(f t(xi), u))

(
xi −

∑

l

βt−1
ul xl

)

with ptul =
∑

l xlβ
t−1
ul the representation step in the on-line relational SOM

is thus

ptu = pt−1
u + µ(t)H t(d(f t(xi), u))

(
xi − pt−1

u

)
,

whih is in the onvex hull of (xi) as long as pt−1
u already is, as shown in

Appendix B. This is also the representation step of the standard on-line

SOM.

Then, the equivalene between kernel SOM and relational SOM follows

straightforwardly sine kernel SOM is equivalent to standard SOM in the

RKHS indued by the kernel and that the square distane in this spae is

given by Equation (3).�
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