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ABSTRACT: Predicting phenotypes is a statistical and 
biotechnical challenge, both in medicine (predicting 
an illness) and animal breeding (predicting the 
carcass economical value on a young living animal). 
High-throughput fi ne phenotyping is possible using 
metabolomics, which describes the global metabolic 
status of an individual, and is the closest to the terminal 
phenotype. The purpose of this work was to quantify 
the prediction power of metabolomic profi les for 
commonly used production phenotypes from a single 
blood sample from growing pigs. Several statistical 
approaches were investigated and compared on the basis 

of cross validation: raw data vs. signal preprocessing 
(wavelet transformation), with a single-feature 
selection method. The best results in terms of prediction 
accuracy were obtained when data were preprocessed 
using wavelet transformations on the Daubechies 
basis. The phenotypes related to meat quality were not 
well predicted because the blood sample was taken 
some time before slaughter, and slaughter is known 
to have a strong infl uence on these traits. By contrast, 
phenotypes of potential economic interest (e.g., lean 
meat percentage and ADFI) were well predicted (R2 = 
0.7; P < 0.0001) using metabolomic data.
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INTRODUCTION

The accurate and reliable prediction of production 
phenotypes may open new perspectives for livestock 
selection. For example, phenotypes of interest could 
be those that are of considerable economic importance 
and have top priority in selection objectives but are too 
expensive to measure routinely or for which measure-
ment is too invasive. Metabolomics is a relatively cheap 
and easy way to predict (reviewed by Rochfort, 2005) 
or discover promising biomarkers (Zhang et al., 2011). 
Recently, this approach was used successfully with pigs 

to compare highly phenotypically differentiated breeds 
(D’Alessandro et al., 2011; He et al., 2012) but not to 
predict commercially important phenotypes in various 
breed × gender-determined conditions involving Euro-
pean pig breeds.

The present work was motivated by the hypothesis 
that the blood metabolome could statistically predict 
some production phenotypes. The rationale is that blood 
metabolism refl ects the general physiological state of 
the animal, resulting from the functional metabolic state 
of the different tissues because blood carries many me-
tabolites and metabolic regulators. The objective of this 
study was to quantify the power of prediction of several 
production phenotypes obtained by metabolomic data 
derived from a single blood sample. The chosen strategy 
was to evaluate the infl uence of breed and batch. Con-
current statistical tools evaluated the signal pretreatment 
step, and the fi nal biological coherence of the results is 
discussed.
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MATERIALS AND METHODS

All procedures and facilities were approved by 
French veterinary services (Direction Départementale 
de la Cohésion Sociale et de la Protection des Popula-
tions in Rennes, France; agreement number A35-240-7). 

Animal Handling and Zootechnical Data

A total of 506 animals from a Large White dam breed 
(LW), a Landracafe dam breed (LR), and a Piétrain sire 
breed (PI) were considered in the analysis.

The animals (male castrates of LW and LR and fe-
males of PI) were raised at the French central test Sta-
tion in Le Rheu (France) in 2007 and 2008 in 8 different 
batches. The sampling design for breeds and batches is 
given in Table 1. Pigs were grouped in pens of 12 animals 
from the beginning of the test period (~10 wk of age) un-
til the day before slaughter, considered as the end of the 
test period (~110 kg BW). They were given ad libitum 
access to water and a standard pelleted diet formulated to 
contain 13.2 MJ DE/kg and 164 g CP/kg feed. Pens were 
equipped with ACEMA 64 electronic feeders (ACEMO, 
Pontivy, France), allowing the recording of individual 
feed consumption (Labroue et al., 1993). Animals were 
individually weighed at the beginning of the test period, at 
the end of the test period (LWETP), and before departure 
to the slaughterhouse (LWS) after at least 16 h of feed 
deprivation. The duration of the test period, LWETP, and 
individual feed consumption during the test period were 
used to calculate ADG, feed conversion ratio (FCR), 
and ADFI during the test period. Slaughters occurred at 
a given BW on a fi xed day in the week in a commercial 
slaughterhouse (Cooperl-Hunaudaye, Montfort-sur-Meu, 
France). Carcass weight with the head (CW) and carcass 
weight without the head (CWwtH) and the weight of the 
right half-carcass (HCW) were recorded after eviscera-
tion on the day of slaughter, and the dressing percentage 
(DP) was calculated as CW × 100/LWS. The day after 
slaughter, the length of the carcass from the pubis to the 
atlas (Length) as well as the backfat thickness at the 
shoulder (BFsh), backfat thickness at the last rib (BFlr), 
and backfat thickness at the hip joint (BFhj) at the sec-
tioned edge of the carcass were recorded. The mean of 

these 3 fat measurements was calculated [mean backfat 
thickness (mBF)]. The measurements used for carcass 
commercial grading (i.e., backfat thickness between the 
third and fourth lumbar vertebrae and between the third 
and fourth last ribs as well as loin eye depth between the 
third and fourth last ribs) were performed using the “fat 
and lean sensor” CGM probe (Sydel Sa, Lorient, France) 
and were combined to estimate the commercial lean meat 
percentage (ComLMP) as described by Daumas et al. 
(1998). Finally, a standardized cutting procedure of the 
right half-carcass was performed as described previously 
(Anonymous, 1990), and ham, loin, backfat, shoulder, and 
belly were weighed [ham weight (hamW), loin weight 
(loinW), backfat weight, shoulder weight (shW), and 
belly weight (beW), respectively] and combined to ob-
tain a second estimate of the lean meat percentage (LMP) 
of the carcass (Métayer and Daumas, 1998). On the same 
day, several meat quality measurements were taken: ulti-
mate pH of the semimembranous muscle (pH24), color of 
the gluteus superfi cialis muscle through the 3 coordinates 
L*, a* and b* of the international CIELAB color scale 
(International Commission on Illumination, Vienna, Aus-
tria) using a CR-300 Chromameter (Konica Minolta; Les 
Ulis, France), and water holding capacity of the gluteus 
superfi cialis muscle (WHC). The WHC, pH24, and L* 
were combined to compute a synthetic meat quality index 
(MQI) defi ned as a predictor of the technological yield 
of cured–cooked Paris ham processing, as described by 
the Tribout et al. (1996). In total, 27 traits were recorded.

Metabolomic Data

Blood samples were collected on sodium heparin 
once for every animal during the test period when animals 
weighed approximately 60 kg. Samples were immediate-
ly centrifuged at 2,500 × g for 15 min at 4°C to separate 
plasma from red cells and stored at –80°C until analysis.

Fingerprinting was performed by proton nuclear 
magnetic resonance (1H NMR) spectroscopy after a 
rapid sample preparation performed as follows: D2O 
(500 μL) was added to plasma (200 μL) and mixed, the 
sample was then centrifuged for 10 min at 3,000 × g 
at room temperature, and the supernatant (600 μL) was 
transferred to 5-mm nuclear magnetic resonance (NMR) 
tubes for 1H NMR analysis.

All 1H NMR spectra were acquired on a Bruker 
Avance DRX-600 spectrometer (Bruker SA, Wissem-
bourg, France) operating at 600.13 MHz for 1H reso-
nance frequency and equipped with a pulsed-fi eld gra-
dients z system, an inverse 1H–13C–15N cryoprobe 
attached to a cryoplatform (the preamplifi er cooling 
unit), and a temperature control unit maintaining the 
sample temperature at 300 ± 0.1°K.

The 1H NMR spectra of plasma samples were ac-

Table 1. Number of pigs in each breed × batch combination

Batch

1 2 3 4 5 6 7 8

Large White,
dam breed

42 45 54 13 16 20 9 0

Landrace,
dam breed

22 39 51 0 21 28 27 0

Pietrain,
sire breed

0 37 29 5 0 33 0 17
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quired at 300Kusing the Carr-Purcell-Meiboom-Gill 
(CPMG) spin-echo pulse sequence with presaturation 
with a total spin-echo delay (2nπ) of 320 ms to attenuate 
broad signals from proteins and lipoproteins, which oth-
erwise display a wide signal and hide the narrower sig-
nals of low molecular weight metabolites. The 1H sig-
nal was acquired by accumulating 128 transients over a 
spectral width of 12 ppm (note: chemical shift units kept 
ppm), collecting 32,000 data points. The interpulse delay 
of the CPMG sequence was set at 0.4 ms with n = 400 as 
defi ned in the following sequence: [90-(τ-180-τ)n acqui-
sition]. A 2-s relaxation delay was applied. The Fourier 
transformation was calculated on 64,000 points. All 1H 
NMR spectra were phased and the baseline corrected. 
The 1H chemical shifts were calibrated on the resonance 
of lactate at 1.33 ppm. Then serum spectra were data-
reduced before statistical analysis using AMIX software 
(Analysis of Mixtures version 3.8; Bruker Analytische 
Messtechnik; Rheinstetten, Germany). The spectral re-
gion δ 0.5 to 10.0 ppm was segmented into consecutive 
nonoverlapping regions of 0.01 ppm (buckets) and nor-
malized according to the total signal intensity in every 
spectrum. The region around δ 4.8 ppm corresponding 
to water resonance was excluded from the pattern rec-
ognition analysis to eliminate artifacts of residual wa-
ter. Eight hundred eleven quantitative variables were 
obtained for every spectrum and were processed by a 
multidimensional scaling-based procedure to select only 
informative metabolic variables. More precisely, the 
multidimensional scaling step, which was repeatedly 
used (n = 8) to select fully informative variables, was 
performed on the transposed matrix of data. Multidi-
mensional scaling is a multidimensional statistical tech-
nique that corresponds here to a principal components 
analysis of the matrix of distances between variables. 
Fully informative metabolic variables display a larger 
variance than baseline variables; therefore, the distances 
between these 2 types of variables are larger than the dis-
tances between the sole baseline variables. Therefore, at 
each selection step and for every variable, we calculated 
a distance between the origin and projection coordinates 
of the variable on the fi rst factorial plan, and variables 
displaying the larger distances were subsequently se-
lected. After 8 selection steps, only baseline relevant 
variables were remaining in the unselected dataset and 
were not included in the informative dataset on which 
further statistical analyses were achieved. Finally, each 
metabolomic profi le or spectrum was observed on a dis-
crete sampling grid of size p = 375 (number of buckets) 
as plotted in Figure 1.

Technical duplicates were performed on a limited 
number of animals and showed a reasonable repeatability 
between them (not shown) as expected. Because it was im-
possible to standardize feeding conditions on the farm and 

exact age, large samples within breeds were performed.
The result of a metabolomic experiment is a spec-

trum in which some points are known to correspond 
to 1 or several metabolites but not all. Identifi cation 
of candidate informative metabolites (after the statis-
tical treatment described below) was performed from 
known chemical shift references acquired on standard 
compounds and found in the literature or in a locally 
developed reference databank. The 2-dimension homo-
nuclear 1H–1H correlation spectroscopy (COSY) and 
2D heteronuclear 1H–13C heteronuclear single quantum 
coherence spectroscopy (HSQC) NMR spectra also 
were registered for selected samples as an aid to spec-
tral assignment. For COSY NMR spectra, a total of 32 
transients were acquired into 1,024 data points. A total 
of 256 increments were measured in F1using a spectral 
width of 10 ppm and an acquisition time of 0.28 s was 
used. The data were weighted using a sine-bell function 
in the 2 dimensions before Fourier transformation. For 
HSQC NMR spectra, a relaxation delay of 2.5 s was 
used between pulses, and a refocusing delay equal to 
1/41JC-H (1.78 ms) was used. A total of 1,024 data points 
with 64 scans per increment and 512 experiments were 
acquired with spectral widths of 10 ppm in F2and 180 
ppm in F1. The data were multiplied by a shifted Qsine-
bell function before Fourier transformation.

Wavelet Preprocessing: Online Supplemental Data 
(Figures S1 to S4)

As proposed by Davis et al. (2007) and Xia et al. 
(2007), each metabolomics profi le was written as the 
sum of weighted elementary functions, describing hier-

Figure 1. Proton nuclear magnetic resonance (1H NMR) spectrum ac-
quired on plasma collected on a single growing pig weighing 60 kg. Informa-
tive variables preselected by a multidimensional scaling procedure performed 
on the transposed matrix of metabolomic data transformed into 0.01-part per 
million (ppm) buckets are colored in blue, when residual information found in 
baseline is colored in grey. A 10-fold magnifi cation of the spectrum in the aro-
matic region above 5.15 ppm is applied. See online version for fi gure in color.
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archically the signal from a rough tendency to the fi nest 
details, in a fi nite number of resolution levels. Here, each 
of the 506 spectra was decomposed onto a Haar basis 
(elementary step functions). The corresponding wavelet 
coeffi cients were thresholded with a soft-thresholding 
method (see Mallat, 1999, for details) to reduce signal 
noise by applying low smoothing. We decided to keep 
the wavelet coeffi cients of every resolution level, from 
which the original spectrum can be rebuilt. In the data 
described in this article, the number q of wavelet coef-
fi cients was equal to 367. Another basis, the Daubechies 
basis made of smooth trimodal elementary functions was 
used also and gave q = 388 wavelet coeffi cients. A more 
detailed description of the wavelet decomposition can 
be found in the Online Supplemental Data (see online 
version of article at http://journalofanimalscience.org).

Selection of Variables for Prediction

Many prediction methods are described in the lit-
erature. Among the most well known, the partial least 
squares (PLS; Wold, 1966) and random forest (Breiman, 
2001) methods use all variables whereas the least abso-
lute shrinkage and selection operator (LASSO; Tibshi-
rani, 1996), elastic net (Zou and Hastie, 2005), or sparse 
PLS (Lê Cao et al., 2008) methods incorporate a feature 
selection step leading to a reduced number of explana-
tory variables in the model. Some of these methods (Y. 
Baraud, C. Giraud, and S. Huet, personal communca-
tion; R package available at http://w3.jouy.inra.fr/unites/
miaj/public/perso/SylvieHuet_en.html) were performed 
on our dataset and provided similar results in terms of 
predictive power (data not shown).

In the case of high dimensionality of the explanatory 
variables, a feature selection approach is useful for high-
lighting a limited number of variables of high predictive 
importance. In general, retaining in the prediction model 
only a set of useful variables avoids overfi tting and en-
sures a smaller prediction error.

Any variable selection method could have been 
used here, either on the raw metabolomic data or on the 
thresholded wavelet coeffi cients, to select the relevant 
set of parameters. In both cases, this represents a clas-
sical problem for variable selection in a linear model. 
We decided to present here only the most widely used 
method: the LASSO technique. Introduced by Tibshirani 
(1996), the LASSO method is a penalized least squares 
approach used to solve ill-posed or badly conditioned 
linear regressions. The main interest of this approach 
comes from the fact that the solution leads to a restricted 
number of nonzero coeffi cients and this number depends 
on the value of the regularization parameter.

Identifying the points (buckets) of the metabolomic 
profi le that contributes the most to phenotype prediction 

can then lead to a biological interpretation step. Indeed, 
some “peaks” (not all) in the profi le have already been 
identifi ed by biochemists to correspond to specifi c me-
tabolites (1 or more metabolites per peak). However, in 
the case of data preprocessing, a single wavelet coeffi -
cient can correspond to a large interval in the metabolo-
mic profi le, making further interpretation more delicate. 
Therefore, only lists of biomarkers obtained from raw 
data are presented in the following sections.

Estimation of Predictive Power

The LASSO technique was applied on 3 versions 
of the data collected for the 27 phenotypes described in 
the Data subsection: raw data and thresholded wavelet 
coeffi cients obtained with the Haar basis and with the 
Daubechies basis.

The parameters of each model (see Models below) 
were estimated fi rst on a subset of the data (learning set 
with 400 observations) and then performances were cal-
culated on the remaining dataset (test set with 106 ob-
servations). The regularization parameter was tuned by 
cross validation on the learning set.

The global procedure (estimation of the set of rel-
evant parameters on the learning set and estimation of 
performances on the test set) was repeated 100 times on 
several random splits of the whole dataset. These ran-
dom splits took into account the experimental setting of 
Table 1. This led to a collection of performance values 
that could be displayed in a boxplot to evaluate the de-
gree of accuracy of each method as well as its variability.

Performances were evaluated using the mean 
squared errors of prediction (MSEP) standardized by 
the variance of the observations averaged on the 100 test 
sets. Note that the MSEP is not upper bounded, so it can 
go to infi nity for very low predictive powers. However, 
the smaller the MSEP is, the better is the predictive pow-
er. A Kolmogorov-Smirnov test of distribution equality 
was computed for the MSEP on the 100 replicates to test 
whether 2 methods were comparable. Paired t-tests were 
used to test the superiority of 1 method against another 
in terms of MSEP.

To achieve a more detailed comparison between the 
results of all tested methods, we counted the number of 
appearances of each selected variable (bucket, Haar coef-
fi cient, and Daubechies coeffi cient) over the 100 replica-
tions, for each dataset (raw data and wavelet coeffi cients 
obtained either with Haar basis or with Daubechies basis).

Models

We focused on 3 different problems in this article: 
the prediction of a phenotype based on the metabolomic 
data alone (Model 1), on breed information and the me-
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tabolomic data (Model 2), and on batch and breed infor-
mation and the metabolomic data (Model 3). We consid-
ered a linear relationship between a phenotype and the 
explanatory variables in all 3 models described above.

Model 1 had the following explanatory variables: 
intercept (always in the model) and the metabolome 
variables (subject to variable selection: 375 for raw data 
and 367 or 388 for wavelet coeffi cients with Haar or 
Daubechies, respectively). Model 2 included a breed ef-
fect (always in the model), and the following effects that 
were subject to variable selection: metabolome variables 
and breed × metabolome interactions. Finally, Model 3 
included breed and batch effects (both always in the mod-
el) as well as metabolome variables, breed × metabolome, 
and batch × metabolome interactions (subject to variable 
selection).

Canonical Analyses

Complementary statistical analyses were performed 
by regularized canonical analysis using the R package 
mixOmics (Lê Cao et al., 2009). Two datasets consist-
ing of phenotypic and metabolomic variables were rep-
resented to evidence the maximal correlations between 
variables, both within and between the 2 datasets.

RESULTS

Comparison of Models

For all phenotypes, the models based on a wavelet pre-
processing step were in general slightly better or at least 
equal in terms of prediction error than the one based on 
the direct use of raw metabolomic data (Supplemental Fig-
ures S5, S6, and S7). The effi ciency of the preprocessing 
step was most obvious when only metabolomic informa-
tion was considered in the model (Model 1). This is well 
exemplifi ed in the 3 data versions of ADFI, both in terms 
of MSEP and number of selected coeffi cients (Figure 2), 
using only the metabolomic information as explanatory 
variables (Model 1). Indeed, MSEP values were observed 
to decrease as was the median number (and strikingly the 
range) of selected coeffi cients of the LASSO regression 
when wavelet preprocessing of data using the Daubechies 
basis but not the Haar basis was applied. This was corrobo-
rated by the comparison of preprocessing methods given 
by the Kolmogorov-Smirnov test for the MSEP (P-values 
for raw data vs. Haar = 0.58, raw vs. Daubechies = 1.3 × 
10–5, and Haar vs. Daubechies = 1.6 × 10–2). Therefore, 
transformation of the signal with wavelets implied signifi -
cant differences in the prediction errors for ADFI. More-
over, the results also showed that a phenotype of interest 
such as ADFI could be well predicted with no need for any 
additional information on the individuals.

When looking into which preprocessing methods gave 
the best MSEP on average over all phenotypes, no clear 
conclusion appeared for Model 1 (Supplemental Figures 
S11 and S12), but Daubechies was overall to be preferred 
to Haar for Model 2 (Figure 3 or Supplemental Figures 
S6, S11, and S12) and Model 3 (Supplemental Figures 
S7, S11, and S12). Moreover, the wavelet transform with 
the Haar basis gave numerous extreme results in terms of 
MSEP. This was more detectable in Model 2 than in Model 
1 (Supplemental Figures S5 and S6). Finally, the P-value 
of the 2-sided Kolmogorov-Smirnov test was equal to 4 × 
10–5 for ADFI, meaning that there can be a signifi cant dif-
ference due to preprocessing in the prediction results for 
some phenotypes.

Prediction of Phenotypes Related to Animal Breeding 
and Carcass Characteristics Using Metabolomic Data

The variation of the prediction levels among all phe-
notypes was very similar whatever the statistical method 
used. We present here the results obtained using 1) the 
best wavelet transform (with Daubechies basis) and 2) 
the simplest approach, namely the LASSO method ap-
plied to the raw dataset (Supplemental Table S2; Figure 
3), hence retaining the possibility for a more direct bio-
logical interpretation of the results than when a wavelet 
transform preprocessing step is applied (see below). The 
mean prediction errors (expressed in phenotypic variance 
units) varied from 0.3 to >1. The worst predictions (larg-
est values of MSEP) are obtained for weights measured 
near slaughter time (i.e., LWETP, CWwtH, HCW, CW, 
and LWS) and for some phenotypes related to postmor-
tem meat processing (i.e., pH24 and L*). For LMP, which 
was the best predicted phenotype with a MSEP value of 
approximately 0.3, the squared correlation (R2) between 
observed values and fi tted values obtained on the train-
ing sample set was equal to 0.82. A R2 value between ob-
served and predicted values of 0.69 was observed for the 

Figure 2. Prediction of ADFI. Boxplot of the preprocessing methods 
considered over 100 resampling replicates, in the model with metabolomic 
data only, on raw data (Raw), preprocessed data with Haar wavelet transfor-
mation (Haar), and Daubechies wavelet (Daub.). (A) Mean square error of 
prediction (MSEP) and (B) number of selected coeffi cients.
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Figure 3. Lean meat percentage phenotype. Estimated values on the 
learning set (A) and predicted values on the test set (B), both against the true 
values. Predictive model with metabolomic data only.

test sample set, showing reasonable adequacy between 
observations and adjustments from the model (Figure 4). 
Use of more complex models was useful to obtain greater 
prediction scores for some traits as described hereafter.

Reinforced Phenotypic Prediction Using Both Me-
tabolomic and Breed Information (Model 2). The pheno-
types considered here could be sorted into 4 classes depend-
ing on their degree of predictability as shown in Figure 3, 
ranging from the best (class C1 with a MSEP less than 0.2) 
to the worst (class C4 with a relative error rate greater than 
0.70). All phenotypes belonging to the classes C1 and C2 
were better predicted when the breed was considered in the 

model (Supplemental Table S2; Figure 3; Supplemental 
Figures S8, S9, and S10).

Prediction Using Breed, Batch, and Metabolomic 
Information (Model 3). The batch variable does not ap-
pear to be a key parameter in the prediction of phenotypes 
(Supplemental Table S2; Figure 3; Supplemental Figures 
S8, S9, and S10). Indeed, MSEP values were almost al-
ways slightly greater when batch was taken into account 
(except shW and DP for phenotypes of classes C1 and C2).

Selected Variables

As shown in Figure 2B for the ADFI phenotype, the 

Figure 4. Mean square error of prediction for all the considered phe-
notypes on the raw metabolomic data with breed information expressed in 
phenotypic variance units. Variables C1, C2, C3, and C4 defi ne 4 classes of 
prediction accuracies. The 3 preprocessing methods are displayed [raw data, 
wavelet transformation with Daubechies basis (Daub. coeff.), and with Haar 
(Haar coeff.)]. The phenotypes: MQI = meat quality index; WHC = water hold-
ing capacity of the gluteus superfi cialis muscle; b*, a*, and L* = color; pH24 = 
ultimate pH of the semimembranous muscle; mBF = mean backfat thickness; 
BFhj = backfat thickness at the hip joint; BFlr = backfat thickness at the last rib; 
BFsh = backfat thickness at the shoulder; Length = length of the carcass from 
the pubis to the atlas; Com.LMP = commercial lean meat percentage; LMP 
= lean meat percentage; beW = belly weight; shW = shoulder weight; bfW 
= backfat weight; loinW = loin weight; hamW = ham weight; DP = dressing 
percentage; HCW = weight of the right half-carcass; CWwtH = carcass weight 
without the head; CW = carcass weight with the head; FCR = feed conversion 
ratio; LWS = weight before departure to the slaughterhouse; LWETP = weight 
at the end of the test period. See online version for fi gure in color.
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Figure 5. Canonical analysis between the proton nuclear magnetic resonance (1H NMR) dataset (X) and the phenotype dataset (Y). A. Projection of variables. 
The 1H NMR variables with correlation <0.4 were not plotted. B. Correlation heatmap between variables belonging to the 2 datasets (X and Y). Classes of variables 
refer to the prediction levels in Figure 3. The phenotypes: MQI = meat quality index; WHC = water holding capacity of the gluteus superfi cialis muscle; L*, a*, and 
b* = CIELAB color scale; pH24 = ultimate pH of the semimembranous muscle; mBF = mean backfat thickness; BFhj = backfat thickness at the hip joint; BFlr = 
backfat thickness at the last rib; BFsh = backfat thickness at the shoulder; Length = length of the carcass from the pubis to the atlas; ComLMP = commercial lean 
meat percentage; LMP = lean meat percentage; beW = belly weight; shW = shoulder weight; bfW = backfat weight; loinW = loin weight; hamW = ham weight; DP = 
dressing percentage; HCW = weight of the right half-carcass; CWwtH = carcass weight without the head; CW = carcass weight with the head; FCR = feed conversion 
ratio; LWS = weight before departure to slaughterhouse; LWETP = BW at the end of the test period. See online version for fi gure in color.
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number of selected coeffi cients was always smaller for 
preprocessed data using a wavelet transform than for raw 
data. Such transformed datasets gave more parsimonious 
models with smaller numbers of explanatory variables.

Concerning Model 2, it should be recalled that the 
breed effect did not undergo feature selection; in this set-
ting, the minimum number of selected variables is 3. A 
nonempty set of metabolites is still of predictive impor-
tance in addition to the breed effect. For Model 3, breed 
and batch did not undergo selection; in this setting, the 
minimum number of selected variables is 11. The num-
ber of selected variables (metabolites and interactions; 
i.e., breed × metabolome and batch × metabolome) is less 
when the batch variable is not considered. It is to be noted 
that no interaction term between metabolite or wavelet 
coeffi cients and breed (or batch) was selected in Model 
2 (or in Model 3).

A few of the explanatory variables obtained for the 
prediction of the LMP phenotype (Table 2) were the 
same when using raw data (Model 1) as when using 
Models 2 or 3. However, their number was signifi cantly 
reduced when the breed factor was taken into account 
in Models 2 and 3 compared with Model 1. When using 
the bootstrap process, some variables were either mostly 
positively linked (PL; i.e., δ 4.05, 2.43, 2.15, 1.33, and 
1.45 ppm), negatively linked (NL; i.e., δ 3.93, 3.20, 7.67, 
2.51, and 0.99 ppm), or both NL and PL (δ 1.03, 2.25, 
and 1.47 ppm) to LMP (not shown). Only variables that 
are steadily linked, either positively or negatively, such 
as creatinine (δ 4.05 ppm, PL), creatine (δ 3.93 ppm, 
NL), choline or phosphocholine or glycerophosphocho-
line (δ 3.20 ppm, NL), glutamine (δ 2.43 and 2.15 ppm, 
PL), lactate (δ 1.33 ppm, PL), alanine (δ 1.45 ppm, PL), 
and isoleucine (δ 0.99 ppm, NL) can be considered for 

the elaboration of the functional hypotheses that could 
explain how the LMP phenotype can be predicted from 
these serum biomarkers. Interestingly, as displayed in 
Figure 5A, canonical analysis performed on all the vari-
ables present in the 2 datasets (i.e., 1H NMR and pheno-
type) demonstrated that the phenotypic variables belong-
ing to the classes C1 and C2 were also those that were 
steadily selected in Models 1, 2, and 3. So, the positive 
correlation underlined by the LASSO-based regression 
between LMP and creatinine (δ 4.05 ppm) or glutamine 
(δ 2.43 ppm) is again well evidenced, as is the negative 
link between LMP and creatine detected at δ 3.93, 3.92, 
and 3.03 ppm (Figure 5B). This signifi cant correlation 
between LMP and creatine is also well evidenced for 
class 2 phenotypes such as ComLMP, DP, shW, hamW, 
beW, and ADFI (Figure 5B). Citrate also would be found 
as NL regressor of LMP when considering the chemical 
shift at δ 2.51 ppm in Model 1 but would be found as PL 
regressor of LMP if we consider the variable at δ 2.54 
ppm. The 2D 1H–1H COSY and 1H–13C HSQC NMR 
spectra showed that signals at 2.51 and 2.54 ppm belong 
to citrate. Indeed, HSQC NMR spectra showed corre-
lation between 13C chemical shift at 48.6 ppm and 1H 
chemical shift at 2.51 and 2.54 ppm. Chemical shift at 
δ 2.51 and 2.54 ppm have been assigned to citrate and 
correspond to a doublet even though the chemical signal 
recorded at δ 2.54 ppm may contain also a low intensity 
signal attributable to β-alanine (correlation between the 
signals at 3.17 and 2.54 ppm in the COSY spectrum) and 
an unknown compound (correlation between the signals 
at 2.39 and 2.54 ppm in the COSY spectrum). Quantita-
tive information measured at these 2 chemical shifts are 
correlated (ρ = 0.35) and would be in favor of an assign-
ment to citrate even though the correlations with LMP 

Table 2. Variable selection for lean meat percentage (LMP) using the raw data for the three models: metabolomic 
data alone (Model 1), metabolomic + breed (Model 2), and metabolomic + breed + batch (Model 3)1

Model 1 Model 2 Model 3

δ, ppm (n) Assignment δ (ppm) (n) Assignment δ (ppm) (n) Assignment

4.05 (100) PL Creatinine 4.05 (100) PL Creatinine 4.05 (100) PL Creatinine
3.93 (100) NL Creatine 1.04 (92) NL Valine 2.25 (97) NL Valine
2.43 (100) PL Glutamine 2.54 (88) PL Citrate, β-alanine, 

and unknown
1.04 (84) NL Valine

1.33 (100) PL Lactate 2.40 (78) PL Glutamine 2.54 (83) PL Citrate, β-alanine, 
and unknown

3.20 (97) NL Choline, P-choline, and
glycerol-P-choline

2.25 (78) NL Valine

1.45 (89) PL Alanine
2.15 (82) PL Glutamine
7.67 (80) NL Unknown
2.51 (74) NL Citrate
0.99 (74) NL Isoleucine

1Chemical shifts (δ) in parts per million (ppm) and putative assignments are given. The appearance of the variable over the 100 replications is given in pa-
rentheses, with the threshold at 70. Metabolites that are positively linked with LMP are denoted by PL (positively linked), and negatively linked metabolites are 
denoted by NL (negatively linked).
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are of different signs but based on different models in-
volving very different numbers of regressors (Table 2).

Reasoning at Constant BW

There was some variability in the development sta-
tus of the pigs included in the dataset, both at the time 
of blood sampling and at the time of slaughter. To be 
able to compare samples, the BW of the animal before 
departure to the slaughterhouse (LWS) was added as a 
covariable in the 3 models described previously. Then 
the phenotype prediction could be considered as being 
at constant weight. Focusing on the LMP phenotype, the 
results obtained with these 3 modifi ed models were sim-
ilar in nature to those presented previously; knowledge 
of the breed improved the prediction of phenotype and 
decreased the number of explanatory variables selected. 
Moreover, the relation between LMP and the few vari-
ables referred to above (PL or NL) was preserved. More 
precisely, the lists of important metabolites were larger 
and included those already highlighted in the model 
that did not take into account the animal BW. However, 
the prediction power was slightly less when the BW at 
slaughter time was considered (not shown).

DISCUSSION

In this article, we showed that it is possible to use 
metabolomic data from a plasma sample to better pre-
dict some production phenotypes in growing pigs. Me-
tabolomic data alone are suffi cient to predict these phe-
notypes. Additional information and predictive power 
are provided by the metabolome when the breed of the 
animal is known. For data from a test farm, small varia-
tions in a breeding environment, which are classically 
summarized in a batch effect, did not disrupt phenotype 
predictions. Additionally, although this work was cen-
tered on prediction accuracy, we supplied supplemen-
tary information on a limited number of metabolites that 
have, as valuable biomarkers, a high predictive power. 
The biological coherence of the list of biomarkers vali-
dated the whole data analysis. In addition, a method-
ological aspect of the statistical treatment was related to 
the specifi city of 1H NMR metabolomic data: a pretreat-
ment of the signal based on the use of wavelets.

Justifi cation of the Statistical Treatment

Metabolomic profi les are continuous by essence. 
Discretization is performed routinely (bucket steps). The 
bucket size was rather large with 0.01 ppm, to avoid a 
possible misalignment between spectra, due to shifts of 
signals, a rather rare phenomenon but still occurring. Ac-
tually, small shifts at 2 to 3 regions of the spectrum re-

corded in plasma samples were locally observed for some 
samples that were reanalyzed with the same spectrom-
eter at 2 different times (not shown). This motivated the 
choice of a relatively large bucket size (0.01 ppm) even 
though a consequence is that some buckets could contain 
more than 1 compound. However, the primary goal of this 
work was prediction and not biological interpretation.

To recover the continuity of the signal, which is 
moreover nonregular, we proposed the use of wavelet 
decomposition, which is one of the most commonly 
used signal transformation approaches. The underlying 
idea is to decompose a complex signal into elementa-
ry forms (orthogonal functions or basis). Unlike Fou-
rier transformation, the wavelet approach is particularly 
suited for uneven and chaotic signals, making it a meth-
od of choice for NMR profi les, and it has already been 
applied in such a context by Davis et al. (2007) and Xia 
et al. (2007). An improvement due to the use of wavelet 
transformation was observed on our data but in a lim-
ited manner. Depending on the tissue (blood, urine, and 
other) and the stability of the baseline on the spectra, 
the wavelet approach could lead to a dramatic improve-
ment of the signal (P. Martin, P. Besse, and S. Déjean, 
personal communication),; approximations of the signal 
at the lowest levels (see Supplemental Material) correct 
rough fl uctuations of the baseline. Results depended 
only slightly on the chosen wavelet basis in this study. 
When the signal is continuous, Daubechies wavelets are 
usually a better choice than Haar ones (step functions). 
The dependency on the basis is generally observed (e.g., 
Luisier et al., 2005, for image denoising; Mahmoud et 
al., 2007, for audio data).

Predictive Power: Valuable Aspects for All Phenotypes

An important methodological question arose before 
the global prediction analysis concerning the choice 
of preprocessing the 1H NMR metabolomic spectra. 
When considering metabolomic data only as predictive 
variables of highly functionally integrated phenotypic 
variables, as shown here, the wavelet transformation of 
original data led to best performances.

Adding information concerning the breed led to few-
er errors of prediction whereas adding batch information 
did not really improve the prediction results. Moreover, 
the batch even seemed to constitute a noisy endogenous 
variable because the predictive power in Model 3 was 
slightly less than in Model 2. Interestingly, in the breeding 
conditions encountered here, this meant that we could put 
aside the possible microenvironmental effect, which may 
vary from batch to batch, for a phenotype prediction ob-
jective. The environmental effect on the phenotype, par-
ticularly diet variation, is probably captured by the me-
tabolomic information (Yde et al., 2010). Thus, given the 
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fact that data are obtained in a control farm that ensures 
standardized breeding conditions, some phenotypes of in-
terest such as LMP can be well predicted without having 
to characterize more precisely the microenvironment of a 
given batch of growing individuals. The same phenom-
enon seems to be encountered for the slight variations of 
animal weight or age that were observed in the dataset; 
the metabolome carries some information pertaining to 
developmental differences so that the prediction of some 
phenotypes such as LMP is better without the weight in-
formation than with it.

Yet this conclusion is based on a large dataset issued 
from 3 breeds. Indeed, when similar analysis was under-
taken within a given breed, predictions of phenotypes 
were disastrous (not shown). This can be explained by 
the smaller number of observations and by less variabil-
ity of the within-breed phenotype.

Prediction Power among Phenotypes and 
Practical Implications

The prediction accuracy is very dependent on the 
phenotype being studied and surprisingly even within 
a group of related phenotypes. Canonical analysis con-
fi rmed that the LASSO-based predictions and the same 
4 classes of prediction of the different phenotypes were 
identifi ed. Two groups of phenotypes were poorly pre-
dicted (class C4 of prediction). They correspond to the 
values of some weights (LWETP, LWS, and CWwtH) 
that depend directly on the decision to send animals to the 
slaughterhouse or not. Therefore, these phenotypes can 
be considered as negative controls, because they should 
be poorly predicted by essence and not worth predicting. 
Meat quality measurements (pH24, L*, a*, b*, WHC, and 
MQI) were poorly predicted possibly because meat qual-
ity is highly infl uenced by preslaughter conditions and 
the blood sample was collected at the test farm during the 
growing period between 60 and 70 kg BW. Indeed, pH is 
known to be very sensitive to the duration of feed depra-
vation and transportation. Moreover, evidence of stress 
conditions has been observed on NMR metabolomics in 
pigs (Bertram et al., 2010) near slaughter or in sheep (Li et 
al., 2011). Meat quality, even though it does not represent 
a direct objective for the selection because it is diffi cult 
to measure, could be potentially considered as a prime 
objective if reliable predictions were available. Metabolo-
mic data from a single blood sample, taken approximately 
3 wk before slaughter, are clearly not suffi cient for such 
an ambitious task for this complex trait.

Backfat measurements (BFsh, BFlr, BFhj, and their 
average mBF) all showed a medium degree of predict-
ability (class 3 of prediction), potentially linked to the 
dynamics of fat deposition during growth, which es-
sentially occurs after 70 kg BW. However, the metabo-

lome-based prediction of these phenotypes is not crucial 
because they are easily measured on the living animal. 
Carcass length (Length) displayed also a limited predic-
tion level but is of no economic interest to date.

In the last groups of phenotypes, 1 phenotype with-
in each group was accurately predicted but the others 
were not. Concerning traits recorded during growth 
(ADG, FCR, and ADFI), we observed that ADFI was 
better predicted than ADG and FCR separately. In-
dividual measurements of ADFI require specifi c and 
expensive equipment and hence are performed rarely. 
However, it represents a very important criterion from 
an economic perspective and presents a moderate to ac-
ceptable level of prediction here. As regards carcass ef-
fi ciency, DP was actually quite well predicted (class 2 
of prediction) even though individual weights (CW and 
LWS) were not. The lean meat content estimated from 
cut weights (LMP) displayed the greatest prediction ac-
curacy (class 1 of prediction). The prediction of weights 
for separate cuts varied from poor to acceptable but was 
always worse than LMP. Lean meat content is a crucial 
trait for breeders because it directly infl uences the pay-
ment for carcasses. Two measurements were available 
and ComLMP and LMP are highly correlated. The lat-
ter measurement is time consuming and requires half 
of a carcass for the cutting of the various pieces. The 
LMP impacts the income of the breeder and the slaugh-
terhouse and displayed the highest predictability level 
among the phenotypes considered here as well as among 
those included in the current selection objective (i.e., 
MQI, ADG, FCR, and LMP).

A Possible Biological Interpretation of 
the Prediction Performance of Lean Meat Percentage

The purpose of this work was not to dissect the meta-
bolic mechanisms linked to the measured traits but to quan-
tify the power of prediction of NMR metabolomic spectra 
for production and quality traits. Discussing biological as-
pects of the most predictive metabolites can be proposed 
but only to check biological coherence of the whole statis-
tical process. Because of a risk of over-interpretation, we 
chose to limit the discussion on that point. Thus, the results 
described above can be validated considering the coher-
ent biological signifi cance of the metabolites selected to 
predict LMP. Indeed, a connection between the phenotype 
LMP and some metabolites found in plasma has been high-
lighted. It involves 1) 3 AA: valine, alanine, and glutamine; 
2) an energetic intermediate of the Krebs cycle, citrate; 
3) an end metabolite of AA, creatinine, and its precursor 
creatine; and 4) choline, a quaternary ammonium deriva-
tive, involved in the biosynthesis of the choline-containing 
phospholipids, acetylcholine and betaine.

In Model 1, the LMP measured at slaughter is posi-
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tively linked to circulating creatinine and negatively linked 
to creatine measured between 60 and 70 kg BW. Creatinine 
is directly linked to the muscular mass and as such is cor-
related to the total AA catabolism in muscle, which may 
depend on gender and hormonally based anabolic treat-
ment (Dumas et al., 2005). Interestingly, when no quali-
tative covariate such as breed (Model 2) or batch (Model 
3) was used in the prediction model, creatine was found 
in plasma as an independent variable negatively linked 
to LMP. This may imply that the energetic requirements 
needed to sustain muscular metabolism are adjusted in a 
coordinated manner according to the relative potential to 
increase muscle mass and result in different circulating 
concentrations of creatine. When breed or batch covari-
ates are introduced in the models, creatine is not found as a 
main independent variable. Probably, creatine as precursor 
of phosphocreatine, this phosphagen represents the greater 
part of the total P-bonded energy in muscle instantaneously 
available to regenerate ATP (Hochachka, 1994; Brosnan 
and Brosnan, 2007), is metabolized at different levels in 
the different breeds because it seems to be linked to a fi nal 
LMP phenotype, which is strikingly differentiated between 
breeds and probably between genders. Glutamine, detected 
at δ 2.43 ppm, and lactate, detected at δ 1.33 ppm, also dis-
played a differential pattern of energy supply to muscle, 
which was positively correlated to LMP between breeds 
(and genders). Glutamine, as a functional AA is involved 
in multiple metabolic pathways and regulates gene expres-
sion and signal transduction pathways (Wu, 2010; Wu et 
al., 2011). Among its different physiological functions, it 
is an important energy substrate, more particularly for rap-
idly dividing cells such as enterocytes. Within-breed (and 
-gender) variations in LMP also are positively correlated 
to citrate. As for phosphagen P-creatine, a greater potential 
in muscle accretion seems to be coordinately sustained by 
systemic bioenergetic adaptation observed at the level of 
the citric acid cycle and lactate metabolism. Unfortunately, 
complementary observations are lacking so it is diffi cult 
to provide, at this stage, sound physiological interpreta-
tion concerning the relative involvement of factors related 
either to the genetic background or to a gender-adjusted 
physiology of such energetic homeostatic adjustments. In-
deed, there are here 2 confounded factors leading to LW or 
LR castrates on one side and PI females on the other.

Because the data (raw, Haar transformed, or Daubechies 
transformed) may have some infl uence on the selected me-
tabolites, we displayed on the mean spectrum the regions 
corresponding to the selected variables, on the particular 
case of Model 2 for the LMP phenotype as a matter of ex-
ample. These results showed that the use of raw data is the 
best approach if one is interested in a biological interpreta-
tion whereas the preprocessing using the Daubechies basis 
is overall the best approach in the case of prediction even 
though its effect is not tremendous on our dataset. The pre-

processing with the Haar basis appeared as a trade-off be-
tween the 2 goals: biological interpretation and phenotype 
prediction.

The 3 approaches all pointed out the fi ne region of the 
spectrum corresponding to creatinine (4.05 ppm). The se-
lected points of the raw data were included in the larger re-
gions pointed out by Daubechies, which displayed regions 
too large to be interpretable.

The purpose of this article was to predict a phenotype 
with NMR metabolomic profi les. This is different from an 
analysis aiming at dissecting the phenotype and discover-
ing metabolites underlying the trait. We only proposed a 
discussion on the selected metabolites (i.e., those with the 
greatest predictive value) for the sake of biological coher-
ence. In this context, it is not a problem that the same me-
tabolites are selected for 2 highly correlated phenotypes. 
This could be due (or not) to a common set of metabolic 
mechanisms.

Metabolomic profi les are now relatively cheap. One 
may use them in practice to obtain targeted metabolic infor-
mation for identifi ed biomarkers or to predict phenotypes 
of economic interest. Several samples could be considered 
during an animal’s life, depending on the phenotypes de-
sired (i.e., linked to growth during the breeding period or 
to meat quality near slaughter time). Generally speaking, 
metabolomic-based prediction of production phenotypes 
would be of practical interest in animal selection, especial-
ly when phenotypes cannot be measured directly on selec-
tion candidates because the measurements require slaugh-
ter (carcass effi ciency traits or meat quality traits) or are too 
expensive (feed effi ciency). The current solution is to mea-
sure these traits on relatives of selection candidates, and this 
information is used to predict the genetic value of the can-
didates. However, phenotypic measurements performed on 
the animal itself rather than on its relatives would provide 
more accurate predictions of the genetic value. If individual 
meat quality traits could be predicted by accurate indirect 
measures (based on metabolome profi les), selection would 
be more effi cient than when based on the performances of 
relatives, which is, moreover, more expensive. The fi rst re-
sults obtained in this study need further validation before 
any practical use in selection schemes.

In conclusion, metabolomic data can be used to predict 
a phenotype without any further knowledge of the individ-
ual. Nevertheless, this prediction ability is again improved 
when the breed information is available as additional data. 
For prediction purposes in general, a well-adapted method 
of reducing noise in data coupled with a sparse prediction 
approach is to be recommended. This is the fi rst time to our 
knowledge that breeding and production traits on growing 
pig have been predicted on the basis of a single blood sam-
ple collected on the living animal during its breeding pe-
riod. The prediction accuracies varied considerably among 
the traits, and some of them showed an accurate prediction. 
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We are enthusiastic about the fi nding that some economi-
cally important traits can be predicted from a simple NMR 
metabolomic profi le obtained from blood.
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