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5 allées A. Machado,
31058 Toulouse cedex 1 - FRANCE
(e-mail: villa@univ-tlse2.fr)

Abstract. In many applications, input data are in fact sampled functions rather
than standard high dimensional vectors. Most of the traditional data analysis tools
for regression, classification and clustering have been adapted to handle functional
inputs under the general name of Functional Data Analysis (FDA). In general,
the major problem is to overcome the issue of infinite dimensional input. This
is done by introducing regularity constraints on the studied functions, thanks to
penalization or to projection on finite dimensional functional spaces.

Support Vector Machine (SVM) are large margin classifier tools that have the
interesting property of being less sensitive to the curse of dimensionality than other
tools. On the contrary, they are based on implicit non linear mappings of the
considered data into high dimensional spaces (sometimes with infinite dimension)
thanks to kernel functions.

In this paper, we investigate the use of Support Vector Machine for functional
data analysis. We define simple kernels that take into account the functional nature
of the data and lead to consistent classification. Experiments conducted on real
world data emphasize the benefit of taking into account some functional aspects of
the problems.
Keywords: Functional Data Analysis, Support Vector Machine, Classification.

1 Introduction

This paper deals with functional classification: let (X,Y ) be a pair of random
variables in which Y takes values in {−1; 1} and X in a functional space. Y
is the label (the class) associated to X. The goal of classification is to predict
the value of Y given an observed value for X. The difficulty in functional
data analysis [Ramsay and Silverman, 1997], compared to the traditionnal
setting, is that X does not take values in R

d but in a functional space.
In this paper, we investigate how Support Vector Machine (SVM) can

be used for functional data classification. The paper is organized as follows:
Section 2 explains why functional SVM leads to particular problems and
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proposes solutions to overcome them. Section 3 develops several functional
kernels and explains how some of them lead to consistent classifier. Finally,
Section 5 illustrates the various approaches on real data sets.

2 Support Vector Machine For FDA

2.1 Hard margin functional SVM

We assume given a learning set, i.e. N examples (x1, y1), . . . , (xN , yN ) which
are i.i.d. realizations of (X,Y ). As explained before, X is a function valued
random variable. More formally, X takes its values in a separable Hilbert
space X , for example a subspace of L2(µ) where µ denotes a finite Borel
measure on R. We denote 〈., .〉 the inner product of X .
The principle of SVM is to perform an affine discrimination of the obser-

vations with the largest margin as possible, that is to find a function w ∈ X
with a minimum norm and a real value b, such that yi(〈w, xi〉+ b) ≥ 1 for all
i. The classification rule associated to (w, b) is simply φ(x) = sign(〈w, x〉+b).
We therefore request the rule to have zero error on the learning set.
In functional spaces, it is always possible to find such a discrimination,

provided the (xi)1≤i≤N are in general position, i.e. provided they span a
vector space of dimension N . However it is well known that the obtained
classification rule do not behave in a satisfactory way unless a regulariza-
tion method is used (see [Hastie and Mallows, 1993], [Marx and Eilers, 1996],
[Ramsay and Silverman, 1997] and [Cardot et al., 1999]).

2.2 Soft margin functional SVM

While SVM introduces a form of regularization by looking for large mar-
gin (i.e., minimal norm for w), additional regularization can be obtained by
solving the following optimization problem:

(PC) minw,b,ξ〈w,w〉+ C
∑N

i=1 ξi,

subject to yi(〈w, xi〉+ b) ≥ 1− ξi,

ξi ≥ 0, for all i = 1, . . . , N,

for an appropriate C ≥ 0. Using the slack variables ξi allows to relax the
very strong condition that the classification rule should make no error on the
learning set. It is well known (see e.g., [Hastie et al., 2004]) that this form
of regularization is needed to achieve good performances for classification in
high dimensional spaces.
In order to solve this problem, we use results from [Chih-Jen, 2001] that

apply to any Hilbert space. Problem (PC) is indeed equivalent to the dual
optimization problem:

(DC) minα
∑N

i=1 αi −
∑N

i,j=1 αiαjyiyj〈xi, xj〉,
subject to

∑N
i=1 αiyi = 0 and 0 ≤ αi ≤ C for all i = 1, . . . , N.
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The advantage of (DC) versus (PC) in the infinite dimensional context is
that the optimization problem (DC) has to be solved in R

N whereas (PC)
needs an optimization procedure in X . Moreover inner products in func-
tional spaces such as L2(µ) are easy to approximate using classical quadra-
ture or Monte Carlo methods. Finaly, the classification rule is obtained as
φ(x) = sign(

∑N
i=1 yiαi〈xi, x〉+ b) which is only based on inner products. In

practice, this means that any SVM software can be used to provide func-
tional classification as long as inner products can be calculated and used in
the software.
It should be noted that C is a free parameter. It has therefore to be chosen

so has to provide good performances. We will provide a possible solution in
section 4.1.

3 Functional kernels

3.1 Kernels for SVM

A major difference between standard multivariate data and functional data
is that the former are seldom linearly separable whereas the latter often are.
In finite dimensional settings, this motivates the use of kernels to replace
the inner product that is used in problem (Dc). A kernel corresponds to an
implicit mapping from the input space to another feature space. In general
this feature space has a high dimension so that the data become linearly
separable in it. Thanks to the dual formulation of the SVM optimization
problem, the implicit mapping is not calculated: everything is based on the
kernel.
For functional data, the use of kernels might seem worthless. However,

despite the regularization provided by using slack variables, it happens in
practice for linear functional SVM to have very bad performances. A possible
solution consists in using functional transformation and functional kernels,
as proposed in this section.

3.2 Using an orthogonal basis

A natural functional kernel can be constructed thanks to the general func-
tional classification framework proposed in [Biau et al., 2005]. The methods
proceeds as follows:

1. choose a complete orthonormal system of X , {Ψj}j≥1, and express each
observation xi as a series expansion xi =

∑

j≥1 xij Ψj ;

2. approximate each observation xi by the sum
∑d

j=1 xij Ψj ;

3. perform a classical R
d SVM on the coefficients x

(d)
i = (xi1, . . . , xid) ∈ R

d

for all i = 1, . . . , N .
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This procedure is equivalent to working with a functional kernel which can
be written as

Kd(x, x′) = K(Pd(x),Pd(x′))
where Pd denotes the projection onto the the space spanned by {Ψj}j=1,...,d

and K is any standard SVM kernel. Of course, d has to be chosen appro-
priately. As recalled in section 4.1, [Biau et al., 2005] proposes to use a split
sample approach.

3.3 Using a B-Spline basis

Another way of choosing a projection space consists in using spline spaces and
their B-spline bases. Results from [Biau et al., 2005] are still applicable, but
with major restriction. Indeed, a B-spline basis is not a basis of L2: it only
spans a subspace of L2. Nevertheless, they perform efficiently in practice.
An interesting property of B-spline bases if they can be use to provide

additional transformation on the input data: using a B-Spline expansion, an
estimation of x(q), the q-th derivative of x, can be easily obtained. Then any
kernel can be used on the derivatives. This method allows to focus on some
particular aspects of the underlying functions, such as the curvature for the
second derivative. It is well known that in some application domain such
as spectrometry, such kind of features might be more interesting than the
original curves. We give in Section 5.3 an application of this approach.

4 Consistency of functional SVM

4.1 Choice of the parameters

Performing a functional SVM leads to choose three types of parameters:

1. parameters due to the functional pre-processing: d, the dimension of the
projection if we use a orthogonal basis as in section 3.2 or the order of the
B-Splines basis, the number of knots and the order q of the derivative(s)
chosen in the case of the pre-processing described in section 3.3;

2. C, the regularization parameter of the SVM (see section 2.2);
3. K, which is indeed the kernel: we can both choose the type of kernel
(linear, gaussian, . . . ) but also the parameter of this kernel such as σ for

the gaussian kernel K(x, x′) = e−‖x−x
′‖2/σ.

In order to select these parameters, we follow [Biau et al., 2005] and use a
data splitting device. To do that, let us introduce some notations: a denotes
the parameters that we have to chosen in a set A of relevant parameters and
P the preprocessing performed on the original data set. The data are then
split into two sets. First, for a fixed value of the parameters, a, a training
set {(xi, yi), i = 1, . . . , l} is used to calculate the SVM classification rule
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φla = sign(
∑l

i=1 α
∗
i yiK(P(.),P(xi)) + b∗) where ({α∗i }i, b∗) are the solution

of (DC) in which we replace the classical dot product by K ◦ P. Then a
validation set {(xi, yi), i = l + 1, . . . , N} is used to select a optimally in A:

a∗ = argmin
a∈A

{

L̂(φla) +
λa√
N − l

}

.

where L̂(φla) =
1
m

∑N
i=l+1 1{φl

a
(xi)6=yi} and

λa√
N−l is a penalty term.

4.2 Consistency

We now restrict ourselves to the case of the functional kernels of section 3.2.
Then, as pointed out by [Biau et al., 2005], a necessary and sufficient con-
dition of consistency for the procedure described in sections 3.2 and 4.1 is
that classical SVM are consistent in R

d. [Steinwart, 2002] shows the univer-
sal consistency of some SVMs when two conditions are fulfilled: the input
data must belong to a compact subset of R

d and the regularization param-
eter for N observations must be equal to CN = Nβ−1 (see Corollary 1 of
[Steinwart, 2002]). This consistency result holds as long as the kernel used
to perform it is universal ; that is : if Φ is the feature map of the kernel,
then the set of all the functions of the form 〈w,Φ(.)〉 has to be dense in the
set of all continuous functions defined on the considered compact subset. In
particular, the gaussian kernel with any σ > 0 is universal for all compact
subsets of R

d.

Therefore, for this procedure, the choice of a = (d,C,K) leads to a con-
sistent classifier provinding some simple facts: for any fixed dimension d, K
has to be chosen in a finite set Kd which contains, at least, one universal
kernel. C can be chosen in a finite grid search (as this is the case in our ap-
plications) but recent progresses (see [Hastie et al., 2004]) allows to choose C
in an interval of the form Id = [0; Cd] by an automatic recurrent procedure.
The consistency result of [Biau et al., 2005] is obtained for a k-nn classifier

but, as stated in the paper, the result can be extended to any classifier.
When choosing C in a infinite set, an adaptation of the proof is needed. As
the original proof is constructed thanks to an oracle inequality that gives
an upper bound for EL(φd∗,C∗,K∗)− L∗ in finite dimension (L∗ denotes the
Bayes error), we have to obtain a similar oracle inequality: this can be done
by the use of the shatter coefficient of a particular class of linear classifiers
which provides the behavior of the classification rule on a set of N − l points
(see [Devroye et al., 1996]). A limitation of SVM that does not appear in
[Biau et al., 2005] for k-nn, is that the input functions must belong to a
compact subset of the functional space.
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5 Applications

5.1 Speech recognition in very high dimensional space

We compare SVM to k-nn by applying exactly the procedure described in
[Biau et al., 2005] to the data used in the paper. The only difference is the
replacement of the k-nn classifier by a regular SVM. The problem considered
in [Biau et al., 2005] consists in classifying speech samples. There are three
two classes problems: classifying “yes” against “no”, “boat” against “goat”
and “sh” against “ao”. For each problem, we have 100 functions. Each
function is described by a vector in R

8192. Performances of the algorithms
are obtained thanks to a leave-one-out procedure: 99 functions are used as
the learning set (to which the split sample procedure is applied to choose the
parameters) and the remaining function provide a test example. We use the
Fourier functional basis. We report the percentage of error for each problem
in the following table:

Problem k-nn QDA Gaussian SVM linear SVM
yes/no 10% 7% 10% 58%
boat/goat 21% 35% 8% 46%
sh/ao 16% 32% 12% 47%

The first two columns have been reproduced from [Biau et al., 2005] (QDA
corresponds to Quadratic Discriminant Analysis). The “Gaussian SVM” col-
umn corresponds to the functional kernel obtained thanks to the projection
of the Fourier basis combined to a Gaussian kernel in R

d. The “linear SVM”
corresponds to the direct application of the procedure described in 2.2, with-
out any prior projection. In general the functional kernel give very satisfac-
tory results, whereas the direct linear approach obtain extremely bad results
(they corresponds to a random classification). This shows that the regular-
ization provided by the slack variables is not adapted to functional data, a
fact that was already known in the context of linear discriminant analysis
[Hastie et al., 1995].
The functional SVM performs in general better than k-nn and QDA, but

the training time of the methods are not comparable. Indeed, solving problem
(DC) can cost up to O(N

3) operations, whereas there is no training time for
k-nn.

5.2 Using wavelet basis

In order to investigate the limitation of the direct use of the linear SVM,
we have applied them to another speech recognition problem. We studied a
part of TIMIT database which was investigated in [Hastie et al., 1995]. The
data are log-periodograms corresponding to recording phonemes of 32 ms
duration. We have chosen to restrict ourselves to classifying “aa” against
“ao”, because this is the most difficult sub-problem in the database. The
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database is a multi-speaker database. Each speaker (325 in the training set
and 112 in the test set) is recorded at a 16-kHz sampling rate; and we retain
only the first 256 frequencies. We have 519 examples for “aa” in the training
set (759 for “ao”) and 176 in the test set (263 for “ao”). We use the split
sample approach to choose the parameters on the training set (50% of the
training examples are used for validation) and we report the classification
error on the test set. The projection basis is here a hierarchical wavelet basis
(see e.g., [Mallat, 1989]). We obtain the following results:

Functional Gaussian SVM Functional linear SVM Linear SVM
22% 19.4% 20%

It appears that functional kernels are not as useful here as in the previous
example, as linear SVM applied directly to the discretized functions (in R

256)
performs as well as linear SVM on the wavelet coefficients. A natural expla-
nation is that the actual dimension of the input space (256) is smaller than
the number of learning examples (1278) which means that evaluating the
optimal coefficients of the SVM is less difficult than in the previous exam-
ple. Therefore, the additional regularization provided by the projection is
not really useful in this context.

5.3 Spectrometric data set

The data presented in this section are 215 near infrared spectra of a meat
sample recorded on a Tecator Infrared Food and Feed Analyser1. The classi-
fication problem consists in separating meat samples with a high fat content
(more than 20%) from sample with a low fat content (less than 20%). It is well
known that in some spectrometric problem, the curvature of the spectrum
is more relevant for the prediction of the sample content than the spectrum
itself. This drives us to construct a classifier based on the curvature of the
spectra i.e. on the second derivative as explained in section 3.3.
We then decide to compare: a linear and a gaussian kernel performed on

the original data and a linear and a gaussian kernel on the second derivatives.
The training set contains 120 spectra (randomly chosen) and the testing set
95 spectra. The parameters (C and σ for the gaussian kernel) are chosen
using a 10-fold cross validation procedure rather than a simple cross valida-
tion procedure. The following table gives the performances of the various
methodologies:

Kernel Learning set error rate Test set error rate
Linear 0.83% 2.11%
Gaussian 0% 4.21%
Linear on second derivatives 0% 0%
Gaussian on second derivatives 0.83% 1.05%

1 available on statlib: http://lib.stat.cmu.edu/datasets/tecator
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It appear that the functional pre-processing slightly improves the results: in
both linear and gaussian kernels, the use of the second derivatives introduces
a kind of expert knowledge and overcomes the limitation of the original kernel.
This is specially the case for the gaussian kernel which is norm dependant
and is then dominated by the mean value of the spectra (which is not a good
feature for spectrometric problems as we already said).

6 Conclusion

We have proposed in this paper functional kernels that provide consistent
classification in Hilbert spaces with Support Vector Machines. When the
considered functions are represented by very high dimensional vectors, pro-
jection based kernels provide regularization that enhance SVM classification
rates. In other contexts, transformation based kernels allow to integrate ex-
pert knowledge in the SVM.
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