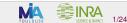
Multiway-SIR for Longitudinal Multi-table Data Integration

Nathalie Villa-Vialaneix, Valérie Sautron, Marie Chavent & Nathalie Viguerie

nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org

COMPSTAT - August 25th, 2016



イロト イロト イヨト イヨト

Sommaire

2/24

Sommaire

2 Presentation of Multiway-SIR

3/24

A longitudinal study on weight loss induced by a low calorie diet

Data collected during EU project, 8 centers, 450 families Purpose: effect of glycemic index, protein content... on weight maintenance after a diet for obese people

A longitudinal study on weight loss induced by a low calorie diet

Data collected during EU project, 8 centers, 450 families Purpose: effect of glycemic index, protein content... on weight maintenance after a diet for obese people

・ ロ ト ・ 同 ト ・ ヨ ト ・

4/24

Data description: at each Clinical Intervention Day (CID), measure of 15 clinical variables (weight, HDL, ...) on 135 obese women

A longitudinal study on weight loss induced by a low calorie diet

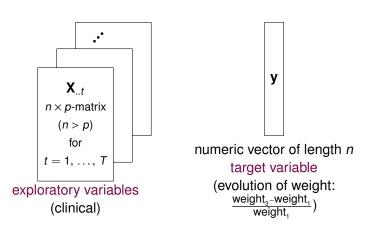
Data collected during EU project, 8 centers, 450 families Purpose: effect of glycemic index, protein content... on weight maintenance after a diet for obese people

Data description: at each Clinical Intervention Day (CID), measure of 15 clinical variables (weight, HDL, ...) on 135 obese women Targeted problem: exploratory data analysis aimed at explaining the success/failure of the diet (in term of weight loss/regain), and the success/failure of the diet (in term of weight loss/regain).

Nathalie Villa-Vialaneix | SIR-STATIS

4/24

Data description and notations



5/24

イロト イロト イヨト

Features:

• longitudinal data integration (with T small; here T = 3)

6/24

Features:

- Ingitudinal data integration (with T small; here T = 3)
- multidimensional data analysis with simple graphical representations (similar to PCA)

э

イロト イヨト イヨト イヨト

Features:

- Ingitudinal data integration (with T small; here T = 3)
- multidimensional data analysis with simple graphical representations (similar to PCA)
- Idesigned to highlight differences in the numeric target variable

э

イロト イヨト イヨト イヨト

Features:

- Ingitudinal data integration (with T small; here T = 3)
- multidimensional data analysis with simple graphical representations (similar to PCA)
- Idesigned to highlight differences in the numeric target variable
- designed to highlight differences/commonalities between variable structure (rather than individual structure) between the different time steps

3

イロト イヨト イヨト

Sommaire

Background and motivation

Standard methods to analyze data such as $(\mathbf{X}_{..t})_{t=1,...,T}$:

• Multiple Factor Analysis (MFA) [Escofier and Pagès, 2008]

• STATIS and DUAL STATIS [Lavit et al., 1994, Abdi et al., 2012]

ヘロアス 留下 キヨア・

Standard methods to analyze data such as $(\mathbf{X}_{..t})_{t=1,...,T}$:

- Multiple Factor Analysis (MFA) [Escofier and Pagès, 2008]: weights for tables X_{...t} according to a measure of their variability (using first eigenvector of the PCA);
- STATIS and DUAL STATIS [Lavit et al., 1994, Abdi et al., 2012]

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Standard methods to analyze data such as $(\mathbf{X}_{..t})_{t=1,...,T}$:

- Multiple Factor Analysis (MFA) [Escofier and Pagès, 2008]: weights for tables X..t according to a measure of their variability (using first eigenvector of the PCA);
- STATIS and DUAL STATIS [Lavit et al., 1994, Abdi et al., 2012]: larger importance to the most consensual tables ⇒ common representation which is the best overall compromise.

イロト イロト イヨト イヨト

Standard methods to analyze data such as $(\mathbf{X}_{..t})_{t=1,...,T}$:

- Multiple Factor Analysis (MFA) [Escofier and Pagès, 2008]: weights for tables X..t according to a measure of their variability (using first eigenvector of the PCA);
- STATIS and DUAL STATIS [Lavit et al., 1994, Abdi et al., 2012]: larger importance to the most consensual tables ⇒ common representation which is the best overall compromise. STATIS: compromise according to individuals and DUAL STATIS: compromise according to correlations between variables.

・ コ ト ・ 日 ト ・ 日 ト ・

Data:
$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{..1} \\ \vdots \\ \mathbf{X}_{..T} \end{pmatrix}$$

same number of variables, potentially
different number of individuals
data are supposed centered and
scaled for all t

・ロト・西ト・ヨト・ヨー うへ(

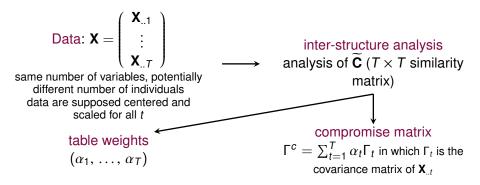
9/24

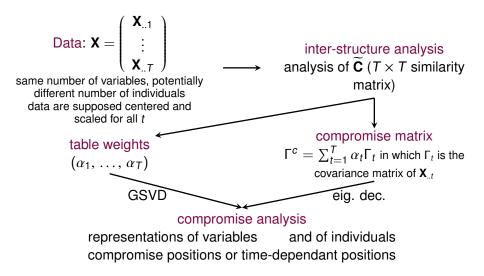
Data:
$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{..1} \\ \vdots \\ \mathbf{X}_{..T} \end{pmatrix}$$

same number of variables, potentially
different number of individuals
data are supposed centered and
scaled for all t

inter-structure analysis analysis of $\widetilde{\mathbf{C}}$ ($T \times T$ similarity matrix)

イロト イロト イヨト





イロト イロト イヨト

Notations:
$$\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\mathsf{T}} \mathbf{X}_{..t}$$
 and $\widetilde{\Gamma}_t = \frac{\Gamma_t}{\|\Gamma_t\|_F}$

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Notations: $\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\mathsf{T}} \mathbf{X}_{..t}$ and $\widetilde{\Gamma}_t = \frac{\Gamma_t}{\|\Gamma_t\|_F}$ Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$c_{tt'} = \langle \widetilde{\Gamma}_t, \widetilde{\Gamma}_{t'} \rangle_F$$

(cosinus between Γ_t and $\Gamma_{t'}$).

596

イロト イポト イヨト 一日

Notations: $\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\mathsf{T}} \mathbf{X}_{..t}$ and $\widetilde{\Gamma}_t = \frac{\Gamma_t}{\|\Gamma_t\|_F}$ Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$c_{tt'} = \langle \widetilde{\Gamma}_t, \widetilde{\Gamma}_{t'} \rangle_F$$

(cosinus between Γ_t and $\Gamma_{t'}$). Inter-structure analysis: Solve

$$\mathbf{u}_{1} = \operatorname*{arg\,max}_{\mathbf{u}=(u_{1},...,u_{T})^{\mathrm{T}}\in\mathbb{R}^{T},\,\|\mathbf{u}\|=1} \left\|\sum_{t=1}^{T}u_{t}\widetilde{\mathsf{\Gamma}}_{t}\right\|_{F}^{2}$$

イロト イヨト イヨト --

Notations:
$$\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\mathsf{T}} \mathbf{X}_{..t}$$
 and $\widetilde{\Gamma}_t = \frac{\Gamma_t}{\|\Gamma_t\|_F}$
Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$c_{tt'} = \langle \widetilde{\Gamma}_t, \widetilde{\Gamma}_{t'} \rangle_F$$

(cosinus between Γ_t and $\Gamma_{t'}$). Inter-structure analysis: Solve

$$\mathbf{u}_{1} = \operatorname*{arg\,max}_{\mathbf{u}=(u_{1},...,u_{T})^{\mathsf{T}}\in\mathbb{R}^{T}, \|\mathbf{u}\|=1} \left\|\sum_{t=1}^{T} u_{t}\widetilde{\mathsf{\Gamma}}_{t}\right\|_{F}^{2}$$

Solution: u_1 is the first eigenvector of $\widetilde{\mathbf{C}} \Rightarrow$ compromise weights:

•
$$\forall t = 1, ..., T, \alpha_t = \frac{u_{1t}}{\sum_{t'} u_{1t'}}$$

• $\Gamma^c = \sum_{t=1}^T \alpha_t \widetilde{\Gamma}_t$

イロト イロト イヨト イヨト

Compromise analysis GPCA of $(\widetilde{\mathbf{X}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{X}}_{..t} = \frac{\mathbf{X}_{.t}}{\sqrt{||\Gamma_t||_F}}$ and $\mathbf{D} = \frac{1}{n} \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbb{I}_n$

Compromise analysis GPCA of $(\widetilde{\mathbf{X}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{X}}_{..t} = \frac{\mathbf{X}_{..t}}{\sqrt{\|\Gamma_t\|_F}}$ and $\mathbf{D} = \frac{1}{n} \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbb{I}_n$ \Leftrightarrow eigendecomposition of Γ^c

Compromise analysis GPCA of $(\widetilde{\mathbf{X}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{X}}_{.t} = \frac{\mathbf{X}_{.t}}{\sqrt{\|\Gamma_t\|_F}}$ and $\mathbf{D} = \frac{1}{n} \text{Diag}(\alpha_1, \ldots, \alpha_T) \otimes \mathbb{I}_n$ \Leftrightarrow eigendecomposition of Γ^c Solution writes:

$$\widetilde{\mathbf{X}} = \mathbf{P} \wedge \mathbf{Q}^{\top}$$
 with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

Э

ヘロト 人間 ト 人目 ト 人目 トー

Compromise analysis GPCA of $(\widetilde{\mathbf{X}}, \mathbb{I}_{p}, \mathbf{D})$ with $\widetilde{\mathbf{X}}_{..t} = \frac{\mathbf{X}_{..t}}{\sqrt{\|\Gamma_{t}\|_{F}}}$ and $\mathbf{D} = \frac{1}{n} \text{Diag}(\alpha_{1}, ..., \alpha_{T}) \otimes \mathbb{I}_{n}$ \Leftrightarrow eigendecomposition of Γ^{c} Solution writes:

 $\widetilde{\mathbf{X}} = \mathbf{P} \Lambda \mathbf{Q}^{\top}$ with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

Representations of:

• observations: *time-specific positions* on the *k*-th principal component: *k*-th column of $\mathbf{F} = \mathbf{P} \Lambda = \begin{bmatrix} \mathbf{F}_1 \\ \vdots \\ \mathbf{F}_T \end{bmatrix}$ *compromise positions* on the *k*-th principal component: *k*-th column of $\mathbf{F}^c = \sum_{t=1}^T \alpha_t \mathbf{F}_{..t}$

ヘロト 人間 トイヨト イヨト

Compromise analysis GPCA of $(\widetilde{\mathbf{X}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{X}}_{..t} = \frac{\mathbf{X}_{..t}}{\sqrt{\|\Gamma_t\|_F}}$ and $\mathbf{D} = \frac{1}{n} \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbb{I}_n$ \Leftrightarrow eigendecomposition of Γ^c Solution writes:

 $\widetilde{\mathbf{X}} = \mathbf{P} \Lambda \mathbf{Q}^{\top}$ with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

Representations of:

• observations: time-specific positions on the *k*-th principal component: *k*-th column of $\mathbf{F} = \mathbf{P}\Lambda = \begin{bmatrix} \mathbf{F}_1 \\ \vdots \\ \mathbf{F} \end{bmatrix}$

compromise positions on the *k*-th principal component: *k*-th column of $\mathbf{F}^c = \sum_{t=1}^{T} \alpha_t \mathbf{F}_{..t}$

• variables: compromise positions on circle of correlations for variable *j* on *k*-th axis: $\frac{\sqrt{\lambda_k}}{\hat{\sigma}_j}Q_{jk}$ (time-specific positions can also be derived)

SIR Regression framework

[Li, 1991]

$$\mathsf{Y} = f(\mathsf{X}^{\top} \mathbf{a}_1, \, \dots, \, \mathsf{X}^{\top} \mathbf{a}_d, \, \epsilon)$$

for d < p and $f : \mathbb{R}^{d+1} \to \mathbb{R}$, an arbitrary (non linear) function.

 $S_{Y|X} = \text{Span}\{a_1, \ldots, a_d\}$ is: Effective Dimension Reduction (EDR) space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

SIR Regression framework

[Li, 1991]

$$\mathbf{Y} = f(\mathbf{X}^{\top}\mathbf{a}_1, \, \dots, \, \mathbf{X}^{\top}\mathbf{a}_d, \, \epsilon)$$

for d < p and $f : \mathbb{R}^{d+1} \to \mathbb{R}$, an arbitrary (non linear) function.

 $S_{Y|X} = \text{Span}\{a_1, \ldots, a_d\}$ is: Effective Dimension Reduction (EDR) space.

Equivalence between SIR and eigendecomposition

 $S_{Y|X}$ is included in the space spanned by the first d Γ -orthogonal eigenvectors of the Γ^e , with $\Gamma = \mathbb{E}\left[(X - \mathbb{E}(X))^T X\right]$ and $\Gamma^e = \mathbb{E}\left(\mathbb{E}(Z|Y)^T \mathbb{E}(Z|Y)\right)$ for $Z = \Gamma^{-1/2}(X - \mathbb{E}(X))$.

イロト イロト イヨト イヨト

SIR in practice

Estimation (when n > p)

• compute $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ and $\Gamma = \frac{1}{n} \mathbf{X}^T (\mathbf{X} - \bar{\mathbf{x}})$

くりょう 山田 マイボット 日 うくの

SIR in practice

Estimation (when n > p)

• compute
$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
 and $\Gamma = \frac{1}{n} \mathbf{X}^T (\mathbf{X} - \bar{\mathbf{x}})$

• split the range of Y into H different slices: τ_1, \dots, τ_H and estimate

$$\mathbf{G} = \left(\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i\right)_{h=1,\dots,H}$$

with
$$n_h = |\{i : y_i \in \tau_h\}|$$
 and

$$\Gamma^{e} = \mathbf{G}^{\mathsf{T}}\mathbf{M}\mathbf{G}$$

with
$$\mathbf{M} = \text{Diag}\left(\frac{n_1}{n}, \dots, \frac{n_H}{n}\right)$$

Э

ヘロト 人間 ト 人注 ト 人注 ト

SIR in practice

Estimation (when n > p)

- compute $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$ and $\Gamma = \frac{1}{n} \mathbf{X}^{T} (\mathbf{X} \bar{\mathbf{x}})$
- split the range of Y into H different slices: τ_1, \dots, τ_H and estimate

$$\mathbf{G} = \left(\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i\right)_{h=1,\dots,h}$$

with $n_h = |\{i : y_i \in \tau_h\}|$ and

$$\Gamma^e = \mathbf{G}^\top \mathbf{M} \mathbf{G}$$

with
$$\mathbf{M} = \text{Diag}\left(\frac{n_1}{n}, \dots, \frac{n_H}{n}\right)$$

generalized eigendecomposition of Γ^e with norm Γ

ヘロト 人間 トイヨト 人間ト

Back to our problem: multiway SIR

Basic ideas:

- perform DUAL STATIS analysis on center of gravity of the slices (G.,t) instead of the original variables
- compromise analysis is similar to finding a compromise EDR space
- using slices make the method similar to FDA but other estimates of Γ^e_t (not based on slices) could be used

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Overview of multiway SIR

Data:
$$\widetilde{\mathbf{X}} = \begin{pmatrix} \mathbf{X}_{..1} \\ \vdots \\ \mathbf{X}_{..T} \end{pmatrix}$$
 and
 $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}$
same number of variables, potentially
different number of individuals

æ

(日)

Overview of multiway SIR

Data:
$$\widetilde{\mathbf{X}} = \begin{pmatrix} \mathbf{X}_{.1} \\ \vdots \\ \mathbf{X}_{.T} \end{pmatrix}$$
 and $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}$ ame number of variables, potentially different number of individuals

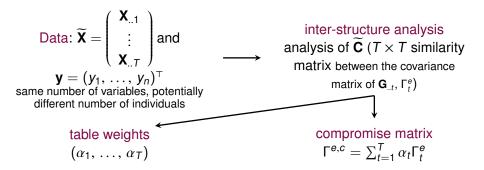
inter-structure analysis analysis of **C** ($T \times T$ similarity matrix between the covariance matrix of $\mathbf{G}_{..t}, \Gamma_t^e$

・ロト ・日ト・ モト

Nathalie Villa-Vialaneix | SIR-STATIS

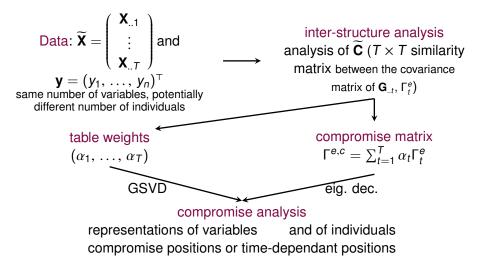
s

Overview of multiway SIR



イロト イロト イヨト

Overview of multiway SIR



イロト イロト イヨト

15/24

Inter-structure analysis Notations: $\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\top} (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top}), \mathbf{Z}_{..t} = (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top}) \Gamma_t^{-1/2},$ $\mathbf{G}_{..t} = (\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i)_{h=1,...,H} \text{ and } \Gamma_t^e = \mathbf{G}_{..t}^{\top} \mathbf{M} \mathbf{G}_{..t} \text{ and } \widetilde{\Gamma}_t^e = \frac{\Gamma_t^e}{\|\Gamma_t^e\|_F}.$

Inter-structure analysis Notations: $\forall t = 1, ..., T, \Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\top} (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top}), \mathbf{Z}_{..t} = (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top}) \Gamma_t^{-1/2},$ $\mathbf{G}_{..t} = (\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i)_{h=1,...,H}$ and $\Gamma_t^e = \mathbf{G}_{..t}^{\top} \mathbf{M} \mathbf{G}_{..t}$ and $\widetilde{\Gamma}_t^e = \frac{\Gamma_t^e}{\|\Gamma_t^e\|_F}$. Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$c_{tt'} = \langle \widetilde{\Gamma}^e_t, \widetilde{\Gamma}^e_{t'} \rangle_F$$

(cosinus between Γ_t^e and $\Gamma_{t'}^e$).

イロト イロト イヨト イヨト 三日

Inter-structure analysis

Notations:
$$\forall t = 1, ..., T$$
, $\Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\mathsf{T}} (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\mathsf{T}})$, $\mathbf{Z}_{..t} = (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\mathsf{T}}) \Gamma_t^{-1/2}$,
 $\mathbf{G}_{..t} = (\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i)_{h=1,...,H}$ and $\Gamma_t^e = \mathbf{G}_{..t}^{\mathsf{T}} \mathbf{M} \mathbf{G}_{..t}$ and $\widetilde{\Gamma}_t^e = \frac{\Gamma_t^e}{\|\Gamma_t^e\|_F}$.
Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$c_{tt'} = \langle \widetilde{\Gamma}^e_t, \widetilde{\Gamma}^e_{t'} \rangle_F$$

(cosinus between Γ_t^e and $\Gamma_{t'}^e$). Inter-structure analysis: Solve

$$\mathbf{u}_{1} = \operatorname*{arg\,max}_{\mathbf{u}=(u_{1},...,u_{T})^{\mathsf{T}} \in \mathbb{R}^{\mathsf{T}}, \|\mathbf{u}\|=1} \left\| \sum_{t=1}^{\mathsf{T}} u_{t} \widetilde{\mathsf{\Gamma}}_{t}^{e} \right\|_{\mathsf{F}}^{2}$$

æ

イロト イロト イヨト イヨト

Inter-structure analysis

Notations:
$$\forall t = 1, ..., T$$
, $\Gamma_t = \frac{1}{n} \mathbf{X}_{..t}^{\top} (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top})$, $\mathbf{Z}_{..t} = (\mathbf{X}_{..t} - \mathbf{1}_n \overline{\mathbf{x}}_t^{\top}) \Gamma_t^{-1/2}$,
 $\mathbf{G}_{..t} = (\frac{1}{n_h} \sum_{i: y_i \in \tau_h} \mathbf{z}_i)_{h=1,...,H}$ and $\Gamma_t^e = \mathbf{G}_{..t}^{\top} \mathbf{M} \mathbf{G}_{..t}$ and $\widetilde{\Gamma}_t^e = \frac{\Gamma_t^e}{\|\Gamma_t^e\|_F}$.
Similarity between time steps: $\widetilde{\mathbf{C}} = (c_{tt'})_{t,t'=1,...,T}$ with

$$\boldsymbol{c}_{tt'} = \langle \widetilde{\boldsymbol{\Gamma}}^{e}_{t}, \widetilde{\boldsymbol{\Gamma}}^{e}_{t'} \rangle_{F}$$

(cosinus between Γ_t^e and $\Gamma_{t'}^e$). Inter-structure analysis: Solve

$$\mathbf{u}_{1} = \operatorname*{arg\,max}_{\mathbf{u}=(u_{1},...,u_{T})^{\mathsf{T}} \in \mathbb{R}^{\mathsf{T}}, \|\mathbf{u}\|=1} \left\|\sum_{t=1}^{\mathsf{T}} u_{t} \widetilde{\Gamma}_{t}^{\boldsymbol{\varphi}}\right\|_{\mathsf{F}}^{2}$$

Solution: u_1 is the first eigenvector of $\widetilde{\mathbf{C}} \Rightarrow$ compromise weights:

•
$$\forall t = 1, ..., T, \alpha_t = \frac{u_{1t}}{\sum_{t'} u_{1t'}}$$

• $\Gamma^{e,c} = \sum_{t=1}^T \alpha_t \widetilde{\Gamma}_t^e$

ヘロアス 留下 キヨア・

Compromise analysis GPCA of $(\widetilde{\mathbf{G}}, \mathbb{I}_{p}, \mathbf{D})$ with $\widetilde{\mathbf{G}}_{..t} = \frac{\mathbf{G}_{..t}}{\sqrt{\|\Gamma_{t}^{e}\|_{F}}}$ and $\mathbf{D} = \text{Diag}(\alpha_{1}, ..., \alpha_{T}) \otimes \mathbf{M}$

Compromise analysis GPCA of $(\widetilde{\mathbf{G}}, \mathbb{I}_{p}, \mathbf{D})$ with $\widetilde{\mathbf{G}}_{..t} = \frac{\mathbf{G}_{.t}}{\sqrt{||\Gamma_{t}^{e}||_{F}}}$ and $\mathbf{D} = \text{Diag}(\alpha_{1}, ..., \alpha_{T}) \otimes \mathbf{M}$ \Leftrightarrow eigendecomposition of $\Gamma^{e,c}$

Compromise analysis GPCA of $(\widetilde{\mathbf{G}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{G}}_{..t} = \frac{\mathbf{G}_{.t}}{\sqrt{\|\Gamma_t^e\|_F}}$ and $\mathbf{D} = \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbf{M}$ \Leftrightarrow eigendecomposition of $\Gamma^{e,c}$ Solution writes:

$$\widetilde{\mathbf{G}} = \mathbf{P} \wedge \mathbf{Q}^{\top}$$
 with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

17/24

Compromise analysis GPCA of $(\widetilde{\mathbf{G}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{G}}_{..t} = \frac{\mathbf{G}_{..t}}{\sqrt{\|\Gamma_t^e\|_F}}$ and $\mathbf{D} = \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbf{M}$ \Leftrightarrow eigendecomposition of $\Gamma^{e,c}$ Solution writes:

 $\widetilde{\mathbf{G}} = \mathbf{P} \wedge \mathbf{Q}^{\top}$ with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

Representations of:

• slices: *time-specific positions* on the *k*-th principal component: *k*-th column of $\mathbf{F} = \mathbf{P} \Lambda = \begin{bmatrix} \mathbf{F}_1 \\ \vdots \\ \mathbf{F}_T \end{bmatrix}$ *compromise positions* on the *k*-th principal component: *k*-th column of $\mathbf{F}^c = \sum_{t=1}^{T} \alpha_t \mathbf{F}_t$

イロト イヨト イヨト イヨト

Compromise analysis GPCA of $(\widetilde{\mathbf{G}}, \mathbb{I}_p, \mathbf{D})$ with $\widetilde{\mathbf{G}}_{..t} = \frac{\mathbf{G}_{..t}}{\sqrt{\|\Gamma_t^e\|_F}}$ and $\mathbf{D} = \text{Diag}(\alpha_1, ..., \alpha_T) \otimes \mathbf{M}$ \Leftrightarrow eigendecomposition of $\Gamma^{e,c}$ Solution writes:

 $\widetilde{\mathbf{G}} = \mathbf{P} \wedge \mathbf{Q}^{\top}$ with $\mathbf{P}^{\top} \mathbf{D} \mathbf{P} = \mathbf{Q}^{\top} \mathbf{Q} = \mathbb{I}_r$ and $\Lambda = \text{Diag}(\sqrt{\lambda_k})_{k=1,...,r}$

Representations of:

• slices: time-specific positions on the k-th principal component: k-th column of $\mathbf{F} = \mathbf{P}\Lambda = \begin{bmatrix} \mathbf{F}_1 \\ \vdots \\ \mathbf{F}_T \end{bmatrix}$

compromise positions on the *k*-th principal component: *k*-th column of $\mathbf{F}^c = \sum_{t=1}^{T} \alpha_t \mathbf{F}_{..t}$

• variables: compromise positions on circle of correlations for variable *j* on *k*-th axis: $\frac{\sqrt{\lambda_k}}{\hat{\sigma}_j}Q_{jk}$ (time-specific positions can also be derived)

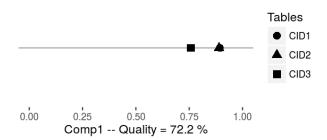
Sommaire

Background and motivation

2 Presentation of Multiway-SIR

Application of multiway SIR on Diogenes dataset I

H = 5, interstructure analysis:



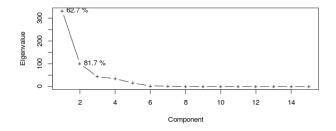
CID1 and CID2 have more similar Γ_t^e than CID3.

æ

イロト イロト イヨト イヨト

Application of multiway SIR on Diogenes dataset II

H = 5, compromise analysis: number of components

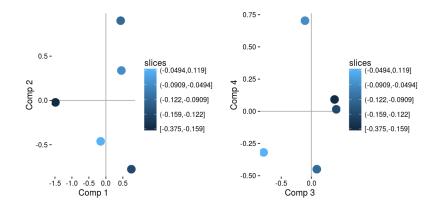


2 components are enough but we will analyze 4 for a deeper understanding of the data.

Image: 1 million

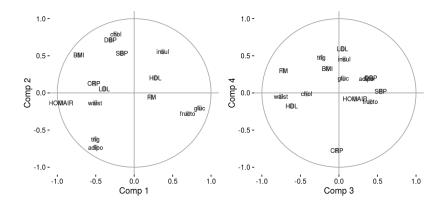
Application of multiway SIR on Diogenes dataset III

H = 5, compromise analysis: analysis of the slices (compromise)



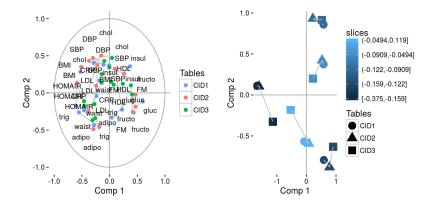
Application of multiway SIR on Diogenes dataset IV

H = 5, compromise analysis: analysis of the variable (compromise)



Application of multiway SIR on Diogenes dataset V

H = 5, compromise analysis: longitudinal analysis



イロト イロト イヨト

Conclusion

We have presented an exploratory analysis method

- based on DUAL STATIS
- able to focus on a numeric variable of interest similarly to SIR
- able to explain longitudinal evolutions when the number of time steps is small

Future work

- an R package is under development
- only valid for n ≥ p: regularization approach is under study to allows for the analysis of n

ヘロア 人間 アメヨア ション

Abdi, H., Williams, L., Valentin, D., and Bennani-Dosse, M. (2012).

STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2):124–167.

Escofier, B. and Pagès, J. (2008).

Analyses Factorielles Simples et Multiples. Dunod.

Lavit, C., Escoufier, Y., Sabatier, R., and Traissac, P. (1994).

The ACT (STATIS method).

Computational Statistics and Data Analysis, 18(1):97-119.

Li, K. (1991).

Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):316–342.

