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A longitudinal study on weight loss induced by a low
calorie diet

Data collected during EU project, 8 centers, 450 families
Purpose: effect of glycemic index, protein content... on
weight maintenance after a diet for obese people

Data description: at each Clinical Intervention Day (CID), measure of 15
clinical variables (weight, HDL, ...) on 135 obese women
Targeted problem: exploratory data analysis aimed at explaining the
success/failure of the diet (in term of weight loss/regain)
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Data description and notations

X..t

n × p-matrix

(n > p)

for

t = 1, . . . , T

exploratory variables
(clinical)

y

numeric vector of length n
target variable

(evolution of weight:
weight3−weight1

weight1
)
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Method presented in this talk

Features:

1 longitudinal data integration (with T small; here T = 3)

2 multidimensional data analysis with simple graphical representations
(similar to PCA)

3 designed to highlight differences in the numeric target variable

4 designed to highlight differences/commonalities between variable
structure (rather than individual structure) between the different time
steps
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Factor analysis methods for multi-tables data integration

Standard methods to analyze data such as (X..t )t=1,...,T :

Multiple Factor Analysis (MFA) [Escofier and Pagès, 2008]

: weights
for tables X..t according to a measure of their variability (using first
eigenvector of the PCA);

STATIS and DUAL STATIS [Lavit et al., 1994, Abdi et al., 2012]

: larger
importance to the most consensual tables⇒ common representation
which is the best overall compromise. STATIS: compromise according
to individuals and DUAL STATIS: compromise according to
correlations between variables.
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Overall description of DUAL STATIS

Data: X =


X..1
...

X..T


same number of variables, potentially

different number of individuals
data are supposed centered and

scaled for all t

inter-structure analysis
analysis of C̃ (T × T similarity

matrix)

table weights
(α1, . . . , αT )

compromise matrix
Γc =

∑T
t=1 αt Γt in which Γt is the

covariance matrix of X..t

eig. dec.GSVD

compromise analysis
representations of variables and of individuals
compromise positions or time-dependant positions
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Inter-structure analysis

Notations: ∀ t = 1, . . . , T , Γt = 1
n X>..tX..t and Γ̃t = Γt

‖Γt ‖F

Similarity between time steps: C̃ = (ctt ′)t ,t ′=1,...,T with

ctt ′ = 〈̃Γt , Γ̃t ′〉F

(cosinus between Γt and Γt ′).
Inter-structure analysis: Solve

u1 = arg max
u=(u1,...,uT )>∈RT , ‖u‖=1

∥∥∥∥∥∥∥
T∑

t=1

ut Γ̃t

∥∥∥∥∥∥∥
2

F

Solution: u1 is the first eigenvector of C̃⇒ compromise weights:

∀ t = 1, . . . , T , αt = u1t∑
t′ u1t′

Γc =
∑T

t=1 αt Γ̃t
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Compromise analysis
GPCA of (X̃, Ip ,D) with X̃..t = X..t√

‖Γt ‖F
and D = 1

n Diag(α1, . . . , αT ) ⊗ In

⇔ eigendecomposition of Γc

Solution writes:

X̃ = PΛQ> with P>DP = Q>Q = Ir and Λ = Diag(
√
λk )k=1,...,r

Representations of:
observations: time-specific positions on the k -th principal component:

k -th column of F = PΛ =


F1
...

FT


compromise positions on the k -th principal component: k -th column
of Fc =

∑T
t=1 αtF..t

variables: compromise positions on circle of correlations for variable j
on k -th axis:

√
λk
σ̂j

Qjk (time-specific positions can also be derived)
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SIR Regression framework

[Li, 1991]
Y = f(X>a1, . . . , X>ad , ε)

for d < p and f : Rd+1 → R, an arbitrary (non linear) function.

SY |X = Span{a1, . . . , ad} is: Effective Dimension Reduction (EDR) space.

Equivalence between SIR and eigendecomposition
SY |X is included in the space spanned by the first d Γ-orthogonal
eigenvectors of the Γe , with Γ = E

[
(X − E(X))T X

]
and

Γe = E
(
E(Z |Y)TE(Z |Y)

)
for Z = Γ−1/2(X − E(X)).
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SIR in practice

Estimation (when n > p)

compute x̄ = 1
n
∑n

i=1 xi and Γ = 1
n XT (X − x̄)

split the range of Y into H different slices: τ1, ... τH and estimate

G =

 1
nh

∑
i: yi∈τh

zi


h=1,...,H

with nh = |{i : yi ∈ τh}| and

Γe = G>MG

with M = Diag
(

n1
n , . . . ,

nH
n

)
generalized eigendecomposition of Γe with norm Γ
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Back to our problem: multiway SIR

Basic ideas:

perform DUAL STATIS analysis on center of gravity of the slices (G..t )
instead of the original variables

compromise analysis is similar to finding a compromise EDR space

using slices make the method similar to FDA but other estimates of Γe
t

(not based on slices) could be used

Nathalie Villa-Vialaneix | SIR-STATIS 14/24



Overview of multiway SIR

Data: X̃ =


X..1
...

X..T

 and

y = (y1, . . . , yn)>
same number of variables, potentially

different number of individuals

inter-structure analysis
analysis of C̃ (T × T similarity

matrix between the covariance

matrix of G..t , Γe
t )

table weights
(α1, . . . , αT )

compromise matrix
Γe,c =

∑T
t=1 αt Γ

e
t

eig. dec.GSVD

compromise analysis
representations of variables and of individuals
compromise positions or time-dependant positions
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Inter-structure analysis
Notations: ∀ t = 1, . . . , T , Γt = 1

n X>..t (X..t − 1nx>t ), Z..t =
(
X..t − 1nx>t

)
Γ−1/2

t ,

G..t =
(

1
nh

∑
i: yi∈τh

zi

)
h=1,...,H

and Γe
t = G>..tM G..t and Γ̃e

t =
Γe

t
‖Γe

t ‖F
.

Similarity between time steps: C̃ = (ctt ′)t ,t ′=1,...,T with

ctt ′ = 〈̃Γe
t , Γ̃

e
t ′〉F

(cosinus between Γe
t and Γe

t ′).
Inter-structure analysis: Solve

u1 = arg max
u=(u1,...,uT )>∈RT , ‖u‖=1

∥∥∥∥∥∥∥
T∑

t=1

ut Γ̃
e
t

∥∥∥∥∥∥∥
2

F

Solution: u1 is the first eigenvector of C̃⇒ compromise weights:

∀ t = 1, . . . , T , αt = u1t∑
t′ u1t′

Γe,c =
∑T

t=1 αt Γ̃
e
t
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(
X..t − 1nx>t

)
Γ−1/2

t ,

G..t =
(

1
nh

∑
i: yi∈τh

zi

)
h=1,...,H

and Γe
t = G>..tM G..t and Γ̃e

t =
Γe

t
‖Γe

t ‖F
.

Similarity between time steps: C̃ = (ctt ′)t ,t ′=1,...,T with

ctt ′ = 〈̃Γe
t , Γ̃

e
t ′〉F

(cosinus between Γe
t and Γe

t ′).
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u=(u1,...,uT )>∈RT , ‖u‖=1

∥∥∥∥∥∥∥
T∑
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t

∥∥∥∥∥∥∥
2

F

Solution: u1 is the first eigenvector of C̃⇒ compromise weights:
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Compromise analysis
GPCA of (G̃, Ip ,D) with G̃..t = G..t√

‖Γe
t ‖F

and D = Diag(α1, . . . , αT ) ⊗M

⇔ eigendecomposition of Γe,c

Solution writes:

G̃ = PΛQ> with P>DP = Q>Q = Ir and Λ = Diag(
√
λk )k=1,...,r

Representations of:
slices: time-specific positions on the k -th principal component: k -th

column of F = PΛ =


F1
...

FT


compromise positions on the k -th principal component: k -th column
of Fc =

∑T
t=1 αtF..t

variables: compromise positions on circle of correlations for variable j
on k -th axis:

√
λk
σ̂j

Qjk (time-specific positions can also be derived)
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Application of multiway SIR on Diogenes dataset I

H = 5, interstructure analysis:

CID1 and CID2 have more similar Γe
t than CID3.
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Application of multiway SIR on Diogenes dataset II

H = 5, compromise analysis: number of components

2 components are enough but we will analyze 4 for a deeper
understanding of the data.
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Application of multiway SIR on Diogenes dataset III

H = 5, compromise analysis: analysis of the slices (compromise)
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Application of multiway SIR on Diogenes dataset IV

H = 5, compromise analysis: analysis of the variable (compromise)
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Application of multiway SIR on Diogenes dataset V

H = 5, compromise analysis: longitudinal analysis
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Conclusion

We have presented an exploratory analysis method

based on DUAL STATIS

able to focus on a numeric variable of interest similarly to SIR

able to explain longitudinal evolutions when the number of time steps
is small

Future work

an R package is under development

only valid for n ≥ p: regularization approach is under study to allows
for the analysis of n < p cases
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