Comparison of network inference packages and methods for multiple networks inference

Nathalie Villa-Vialaneix http://www.nathalievilla.org nathalie.villa@univ-paris1.fr

1ères Rencontres R - BoRdeaux, 3 Juin 2012

Joint work with Nicolas Edwards, Laurence Liaubet, Nathalie Viguerie & Magali SanCristobal

Plan

1 From transcriptomic data to network

2 Network inference and multiple networks inference using R

3 Simulations

Transcriptome

- DNA contains the genetic instructions used in the development and functioning of living organims
- Molecular unit of the DNA, genes, are not all identically expressed in a given cell: it is assessed by means of the quantity of the corresponding mRNA
- Genes expression can be measured by microarray, RT PCR...: transcriptomic data

Modelling multiple interactions between genes with a network

Co-expression networks

Modelling multiple interactions between genes with a network

- **Co-expression networks**
 - nodes: genes
 - edges: "direct" co-expression between two genes

Multiple networks inference

Transcriptomic data coming from several different conditions. Examples:

- genes expression from pig muscle in Landrace and Large white breeds;
- genes expression from obese humans after and before a diet.

Multiple networks inference

Transcriptomic data coming from several different conditions. Examples:

- genes expression from pig muscle in Landrace and Large white breeds;
- genes expression from obese humans after and before a diet.

- Assumption: A
 - common functioning exists regardless the condition;
- Which genes are correlated

independently from/depending on the condition?

Plan

1 From transcriptomic data to network

2 Network inference and multiple networks inference using R

3 Simulations

Theoretical framework

Gaussian Graphical Models (GGM) $X \sim \mathcal{N}(0, \Sigma)$ Seminal work [Schäfer and Strimmer, 2005], GeneNet: estimation of the partial correlations

$$\pi_{jj'} = \operatorname{Cor}(X^j, X^{j'} | X^k, k \neq j, j')$$

(by using the inverse of $\overline{\Sigma} + \lambda \mathbb{I}$) and edges selection by a Bayesian test based on a mixture model.

Theoretical framework

Gaussian Graphical Models (GGM) $X \sim \mathcal{N}(0, \Sigma)$ Edges selection by sparse penalty: **graphical LASSO**

[Meinshausen and Bühlmann, 2006, Friedman et al., 2008], glasso:

$$X^j = \sum_{k \neq j} \beta_{jk} X^k + \epsilon.$$

where $(\beta_{jk})_{jk}$ are estimated by

$$\max_{(\beta_{jk})_{k\neq j}} \left(\log \mathrm{ML}_j - \lambda \sum_{k\neq j} |\beta_{jk}| \right).$$

 β_{jk} is related to $S = \Sigma^{-1}$ by $\beta_{jk} = -\frac{S_{jk}}{S_{ii}}.$

Theoretical framework

Gaussian Graphical Models (GGM) $X \sim \mathcal{N}(0, \Sigma)$ Edges selection by sparse penalty: **graphical LASSO**

[Meinshausen and Bühlmann, 2006, Friedman et al., 2008], glasso:

$$X^j = \sum_{k \neq j} \beta_{jk} X^k + \epsilon.$$

where $(\beta_{jk})_{jk}$ are estimated by

$$\max_{\beta_{jk}} \left(\log \mathrm{ML}_j - \lambda \sum_{k \neq j} |\beta_{jk}| \right).$$

 β_{jk} is related to $S = \Sigma^{-1}$ by $\beta_{jk} = -\frac{S_{jk}}{S_{jj}}$. **Other related packages: parcor** (different regularization methods for GGM, CV selection), **GGMselect** (network selection among a family): not used here

Multiple networks

Independent estimations: if c = 1, ..., C are different samples (or "conditions", e.g., breeds or before/after diet...)

$$\max_{(\beta_{jk}^{c})_{k\neq j,c=1,...,C}} \sum_{c} \left(\log \mathrm{ML}_{j}^{c} - \lambda \sum_{k\neq j} |\beta_{jk}^{c}| \right).$$

Multiple networks

Independent estimations: if c = 1, ..., C are different samples (or "conditions", e.g., breeds or before/after diet...)

$$\max_{(\beta_{jk}^c)_{k\neq j,c=1,\ldots,C}} \sum_{c} \left(\log \mathrm{ML}_j^c - \lambda \sum_{k\neq j} |\beta_{jk}^c| \right).$$

Joint estimations:

Implemented in the package simone, [Chiquet et al., 2011]

GroupLasso Consensual network between conditions (enforces identical edges by a group LASSO penalty)

CoopLasso Sign-coherent network between conditions (prevents edges that corresponds to partial correlations having different signs; thus allows one to obtain a few differences between the conditions)

Intertwined In GLasso replace $\widehat{\Sigma}^c$ by $1/2\widehat{\Sigma}^c + 1/2\overline{\Sigma}$ where $\overline{\Sigma} = \frac{1}{C}\sum_c \widehat{\Sigma}^c$

Multiple networks

Independent estimations: if c = 1, ..., C are different samples (or "conditions", e.g., breeds or before/after diet...)

$$\max_{(\beta_{jk}^{c})_{k\neq j,c=1,...,C}} \sum_{c} \left(\log \mathrm{ML}_{j}^{c} - \lambda \sum_{k\neq j} |\beta_{jk}^{c}| \right).$$

Joint estimations: Additional tested approaches:

- Use the fact that individuals are paired (if concerned) to compute the partial correlations: $\widehat{\mathbf{X}}_{i}^{c} = 1/2\mathbf{X}_{i}^{c} + 1/2\overline{\mathbf{X}}_{i}$ with $\overline{\mathbf{X}}_{i} = \sum_{c} \widehat{\mathbf{X}}_{i}^{c}$ (implemented with **GeneNet** and **simone**)
- Combine the partial correlations instead of the correlations as in Intertwined (implemented from independent estimations obtained using simone, called "therese")

Tested packages and features

	Indep.	Joint	Selection?	Inputs	Outputs
GeneNet	[1]	No	confidence threshold	X	$(\pi_{ij})_{ij}$
glasso	[2,3]	No	none (but LASSO path	Σ	$(S_{ij})_{ij}$
			is available)		
simone	[2,3]] Yes number of edges AIC, BIC (LASSO path)		X	$(S_{ij})_{ij}$
			(LASSO path)		

with

- [1] [Schäfer and Strimmer, 2005]
- [2] [Meinshausen and Bühlmann, 2006]
- [3] [Friedman et al., 2008]

not shown: CV selection is not included in **glasso** and **simone**, but it can be implemented (be careful to the internal scaling and to the outputs)

Plan

From transcriptomic data to network

2 Network inference and multiple networks inference using R

3 Simulations

Data

Agence Nationale de la Recherche

Datasets coming from

ANN The ANR project "DéLiSus" ("caractérisations génétique et phénotypique fines de populations porcines françaises", genetic and phenotypic variability of French pigs)

The pan-European project "DiOGenes" (Diet, Obesity

and Genes: new insight on obesity problems and routes to prevention)

Datasets description

Real datasets "DiOGenes" dataset:

- variables: 39 variables (genes expressions and clinical variables)
- conditions: before/after a diet (paired individuals: 204 obese women)

"DeLiSus" dataset:

- variables: expression of 123 genes
- conditions: two breeds (33 "Landrace" and 51 "Large white")

Datasets description

Real datasets "DiOGenes" dataset:

- variables: 39 variables (genes expressions and clinical variables)
- conditions: before/after a diet (paired individuals: 204 obese women)

"DeLiSus" dataset:

- variables: expression of 123 genes
- conditions: two breeds (33 "Landrace" and 51 "Large white")

Simulated dataset

To compare methods, a dataset was simulated from a GGM (with **simone**):

- **underlying network:** 39 variables with 5 groups of preferential attachment and a density equal to approximatly 3-4%.
- children networks: two networks obtained by randomly permuting 10% of the edges;
- variables: 2 × 204 observations of a GGM coming from these networks (observations are not pairwise).

Simulations

Simulation results and conclusions

All methods

 $\begin{array}{l} \text{Precision} = \frac{tp}{p} \\ \text{Recall} = \frac{tp}{tp+fn} \end{array}$

Simulation results and conclusions

All methods

 $\begin{array}{l} \textbf{Precision} = \frac{tp}{p} \\ \textbf{Recall} = \frac{tp}{tp+fn} \end{array}$

- glasso performs well (with very low variability) but no real solution for tuning;
- simone performs well (especially joint methods), with an automatic tuning but large variability;
- "therese" has a low variability but no real solution for tuning;
- GeneNet has a low recall and a low
 variability

Simulation results and conclusions Numerical performances

Graph densities

True density: 3.57% (on average)

- GeneNet (automatic): 4.38%
- glasso (manual): 8.14%
- simone (indep, BIC): 6.65% and simone (joint, BIC): 5.87%
- "therese" (semi manual): 5.26%

Simulation results and conclusions Numerical performances

Graph densities

True density: 3.57% (on average)

- GeneNet (automatic): 4.38%
- glasso (manual): 8.14%
- simone (indep, BIC): 6.65% and simone (joint, BIC): 5.87%
- "therese" (semi manual): 5.26%

Shared edges between conditions

Truth: 20.28% (on average)

- GeneNet (automatic): 15.95%
- glasso (manual): 32.74%
- simone (indep, BIC): 26.69% and simone (joint, BIC): 31.15%
- "therese" (semi manual): 30.92%

Simulations

"DiOGenes" dataset (39 variables, 204 obese women, fixed density 5%)

			Density		Transitivity		% shared			
[1] GeneNet			0.06		0.22		0.68			
[2] GeneNet (paired)			0.09		0.24		0.84			
[3] s	[3] simone (indep., Fried.)			0.05		0.52		0.76		
[4] s	[4] simone, CoopLasso			0.06		0.30		1.00		
[5] s	[5] simone, GroupLasso			0.06		0.30		1.00		
[6] s	[6] simone, intertwined			0.05		0.37		0.97		
[7] s	[7] simone , paired			0.04		0.52		0.94		
[8] "	[8] "therese"			0.05		0.46		0.82		
	[1]	[2]	[3]	[4]	[5	5]	[6]		[7]	[8]
[1]	1.00	0.98	0.45	0.61	0.6	51	0.53	0	.42	0.42
[2]		1.00	0.58	0.66	0.6	66	0.66	0	.55	0.58
[3]			1.00	0.79	0.7	79	0.84	1	.00	0.92
[4]				1.00	1.0	00	0.95	0	.76	0.76
[5]					1.0	00	0.95	0	.76	0.76
[6]							1.00	0	.82	0.79
[7]								1	.00	0.97
[8]										1.00

Simulations

"DeLiSus" dataset (restricted dataset with 84 genes (51 pigs))

			Density		Transitivity		% shared			
[1] GeneNet			0.00		0.71		0.46			
[2] simone, MB-AND				0.05		0.08		0.17		
[3] simone , Fried.				0.05		0.19		0.22		
[4] simone , intertwined				0.05		0.09		0.52		
[5] simone , CoopLasso				0.06		0.09		0.88		
[6] \$	[6] simone , GroupLasso				0.04		0.07		0.99	
[7] "therese"			0.05		0.17			0.66		
	[1]	[2]	[3]	[4]	[5]	[6]	[7	7]	
[1]	1.00	0.00	0.00	0.00	0.0	0	0.00	0.	00	
[2]		1.00	0.71	0.76	0.6	64	0.56	0.	57	
[3]			1.00	0.67	0.5	5	0.53	0.78		
[4]				1.00	0.8	80	0.67	0.	58	
[5]					1.0	0	0.84	0.	60	
[6]							1.00	0.	74	
[7]								1.	00	

Conclusion

simulations: BIC is not always relevant ⇒ target density, CV,
 GGMselect...? Joined methods produce more shared edges between conditions

Conclusion

- simulations: BIC is not always relevant ⇒ target density, CV,
 GGMselect...? Joined methods produce more shared edges between conditions
- real life datasets
 - low dimension case: large consensus between methods; joined methods are too similar (except maybe paired GeneNet and "therese")
 - **larger dimension case**: methods are less consensual; GroupLasso and CoopLasso still produce too much shared edges
 - very large dimension (not shown): 464 gene expressions for 51 + 33 pigs gave very bad performances: on real dataset, some methods were unable to produce results (and BIC selected graphs with no edge); hence, on simulated datasets with the same sample size and dimension, the recall was always very low.

Collaboration Any questions?...

Co-authors

Nathalie Villa-Vialaneix (SAMM, U. Paris 1)

Nicolas Edwards (LGC, INRA TIse)

Laurence Liaubet (LGC, INRA TIse)

Nathalie Viguerie (ORL, INSERM)

Magali SanCristobal (LGC, INRA TIse)

References

Chiquet, J., Grandvalet, Y., and Ambroise, C. (2011). Inferring multiple graphical structures. Statistics and Computing, 21(4):537–553.

Friedman, J., Hastie, T., and Tibshirani, R. (2008).

Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441.

Meinshausen, N. and Bühlmann, P. (2006).

High dimensional graphs and variable selection with the lasso. *Annals of Statistic*, 34(3):1436–1462.

Schäfer, J. and Strimmer, K. (2005).

An empirical bayes approach to inferring large-scale gene association networks. *Bioinformatics*, 21(6):754–764.

イロト イボト イヨト イヨト