Permutation tests for labeled network analysis

Nathalie Villa-Vialaneix
http://www.nathalievilla.org
nathalie.villa@univ-paris1.fr

ERCIM 2013, London, 14-16 December 2013

Joint work with Thibault Laurent (Toulouse School of Economics) Bertrand Jouve (Université Lyon 2), Fabrice Rossi (Université Paris 1) & Florent Hautefeuille (Université Toulouse 2)
Outline

1. Settings and scope

2. Permutation test for numeric labels or factors

3. Permutation test for spatial labels
Framework

Data: A weighted undirected network/graph \mathcal{G} with n nodes x_1, \ldots, x_n and weight matrix W st: $W_{ij} = W_{ji} \geq 0$ and $W_{ii} = 0$.

Used to represent relations between entities (social network, gene regulation network, ...)

Framework

Data: A weighted undirected network/graph G with n nodes x_1, \ldots, x_n and weight matrix W st: $W_{ij} = W_{ji} \geq 0$ and $W_{ii} = 0$.

For each node, an additional information

$$C : x_i \rightarrow c_i$$

c_i: numeric ($c_i \in \mathbb{R}$), factor ($c_i \in \{m_1, \ldots, m_k\}$) or spatial information.

Examples: Genders in a social network, Functional groups genes in a gene regulation network, Weight of people in a social network, Number of visits of a web page in WWW, Place of home in a social network...
Questions?

Is there a link between the node labels \((c_i)_i\) and the network structure?
Questions?

Is there a link between the node labels \((c_i)_i\) and the network structure?

- For a **factor label**, are the nodes labelled with a given value more connected to nodes with the same value than expected? less connected?
- For a **numerical label**, are the numerical values of the nodes more correlated to the values of connected nodes than expected?
- For a **spatial label**, is there a stronger/smaller proximity than expected between the spatial labels of connected nodes?

where “expected” means: in comparison to a random distribution over the network.
Analogy between spatial statistics and network analysis

Spatial statistics: spatial units \((x_i)_i\) frequently described by a spatial matrix \(W\) st \(W_{ij}\) encodes adjacency between \(x_i\) and \(x_j\) (sometimes row/column normalized)

Network analysis: nodes \((x_i)_i\) described by a neighbourhood matrix \(W\), which is symmetric
Outline

1. Settings and scope
2. Permutation test for numeric labels or factors
3. Permutation test for spatial labels
Join Count Statistics

Binary labels: $c_i \in \{0, 1\}$.

General form:

$$JC = \frac{1}{2} \sum_{i \neq j} W_{ij} \xi_i \xi_j$$

where ξ_i is either c_i or $1 - c_i$.
Join Count Statistics

Binary labels: \(c_i \in \{0, 1\} \).

General form:

\[
JC = \frac{1}{2} \sum_{i \neq j} W_{ij} \xi_i \xi_j
\]

where \(\xi_i \) is either \(c_i \) or \(1 - c_i \).

Basic interpretation: \(JC_1 \) “large” (/“small”) \(\Leftrightarrow \) nodes labelled “1” tends to be linked to nodes labelled the same way (/the opposite way)
Join Count Statistics

Binary labels: $c_i \in \{0, 1\}$.

General form:

$$JC = \frac{1}{2} \sum_{i \neq j} W_{ij} \xi_i \xi_j$$

where ξ_i is either c_i or $1 - c_i$.

Basic interpretation: JC_1 “large” (or “small”) \Leftrightarrow nodes labelled “1” tends to be linked to nodes labelled the same way (or the opposite way).

Statistical significance: When is JC_1 significantly large or small?

- **Method 1:** [Noether, 1970] JC_1 is asymptotically normally distributed but requires additional assumptions on the network structure and not valid for small networks;

- **Method 2:** Monte Carlo approach: Randomly permute c_i over the nodes, P times \Rightarrow empirical distribution of JC_1 compared to the actual JC_1.

Nathalie Villa-Vialaneix (ERCIM 2013)
A toy example: “Les Misérables”

Data: Co-appearance network of the novel “Les Misérables” (Victor Hugo) where the nodes are labelled with gender (F/M).
Permutation test for numeric labels or factors

A toy example: “Les Misérables”

Data: Co-appearance network of the novel “Les Misérables” (Victor Hugo) where the nodes are labelled with gender (F/M).

Empirical distribution with Monte Carlo approach \((P = 1000) \)

Estimated p-value and conclusion

<table>
<thead>
<tr>
<th>Gender</th>
<th>Join count value</th>
<th>Large</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>55</td>
<td>0.7932</td>
<td>0.2068</td>
</tr>
<tr>
<td>M</td>
<td>520</td>
<td>0.0224</td>
<td>0.9755</td>
</tr>
</tbody>
</table>

\[JCF \]

\[JC_M \]
A toy example: “Les Misérables”

Data: Co-appearance network of the novel “Les Misérables” (Victor Hugo) where the nodes are labelled with gender (F/M).

Estimated p-value and conclusion

<table>
<thead>
<tr>
<th>Gender</th>
<th>Join count value</th>
<th>Large</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>55</td>
<td>0.7932</td>
<td>0.2068</td>
</tr>
<tr>
<td>M</td>
<td>520</td>
<td>0.0224</td>
<td>0.9755</td>
</tr>
</tbody>
</table>
Moran’s I

Numeric labels: $c_i \in \mathbb{R}$.

[Moran, 1950], *I* statistics:

$$I = \frac{1}{2m} \sum_{i \neq j} W_{ij} \bar{c}_i \bar{c}_j$$

$$= \frac{1}{n} \sum_i \bar{c}_i^2$$

where $m = \frac{1}{2} \sum_{i \neq j} W_{ij}$ and $\bar{c}_i = c_i - \bar{c}$ with $\bar{c} = \frac{1}{n} \sum_i c_i$.

Interpretation: I "large" \iff nodes tend to be connected to nodes which have similar labels.
Moran’s I

Numeric labels: \(c_i \in \mathbb{R} \).

[Moran, 1950], \(I \) statistics:

\[
I = \frac{1}{2m} \sum_{i \neq j} W_{ij} \bar{c}_i \bar{c}_j
\]

\[
\frac{1}{n} \sum_i \bar{c}_i^2
\]

where \(m = \frac{1}{2} \sum_{i \neq j} W_{ij} \) and \(\bar{c}_i = c_i - \bar{c} \) with \(\bar{c} = \frac{1}{n} \sum_i c_i \).

Interpretation: \(I \) “large” \(\Leftrightarrow \) nodes tend to be connected to nodes which have similar labels.
Moran’s I

Numeric labels: $c_i \in \mathbb{R}$.

[Moran, 1950], I statistics:

$$I = \frac{1}{2m} \sum_{i \neq j} W_{ij} \bar{c}_i \bar{c}_j$$

$$= \frac{1}{n} \sum_i \bar{c}_i^2$$

where $m = \frac{1}{2} \sum_{i \neq j} W_{ij}$ and $\bar{c}_i = c_i - \bar{c}$ with $\bar{c} = \frac{1}{n} \sum_i c_i$.

Interpretation: I “large” \Leftrightarrow nodes tend to be connected to nodes which have similar labels.

Deriving a test for I: once again, asymptotic normality can be proved but using a **Monte Carlo simulation** is useful for small network cases.
Outline

1. Settings and scope
2. Permutation test for numeric labels or factors
3. Permutation test for spatial labels
Relational data coming from a large corpus of medieval documents 1/2

A large corpus of notarial acts

The corpus has been re-written by a feudist during the XIXe century and is kept at the archives départementales du Lot (Cahors, France)

- notarial acts related to rents (mostly “baux à fief”);
- established between 1250 and 1500;
- in the seigneurie (about 10 little villages) called Castelnau Montratier (Lot, France).
Relational data coming from a large corpus of medieval documents 2/2

Defining a **bipartite graph**:

- **nodes**: transactions and individuals (3,918 nodes)
- **edges**: an individual directly involved in a transaction (6,455 edges)
- **labels**: for individuals (name, role...), for transactions (place: parish, date...)
Spatial labels

transactions are spatially localized: 45 parishes (known positions);

Question: What is the impact of the spatial locations of lands exchanged in the transactions on the way the individuals interact?
Graphs built from medieval documents

From the bipartite graph, define a **projected graph**:

- nodes are the individuals
- an edge connects two individuals if they are involved in the same transaction (edges can eventually be weighted)
Social distances between individuals \((S_{ij})_{ij}\)

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.
Social distances between individuals $(S_{ij})_{ij}$

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

1. **shortest path length** on the graph;
Social distances between individuals \((S_{ij})_{ij}\)

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

1. **shortest path length** on the graph;
2. **similarities based on the adjacency matrix:**

\[
A_{ij} = \begin{cases}
1 & \text{si les sommets } i \text{ et } j \text{ sont liés par une arête} \\
0 & \text{sinon.}
\end{cases}
\]
Social distances between individuals \((S_{ij})_{ij}\)

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

1. **shortest path length** on the graph;
2. **similarities based on the adjacency matrix**: regularized versions of the Laplacian \((L = \text{Diag}(d_i) - A\) where \(d_i\) is the degree of node \(i)\):

\[
L^+
\]

e.g., “commute time kernel” [Fouss et al., 2007]
Spatial distances between individuals \((G_{ij})_{ij}\)

Quantifying spatial distances between individuals \((G_{ij})_{ij}\)

Idea:

- List of parishes cited in the transactions in which the individual is involved;
- Center of gravity of these locations.
Spatial distances between individuals \((G_{ij})_{ij}\)

Quantifying spatial distances between individuals \((G_{ij})_{ij}\)

Idea:

- List of parishes cited in the transactions in which the individual is involved;
- Center of gravity of these locations.

Spatial distance: distance between centers of gravity.
Standard approach: Mantel’s test

Test of the correlation between two matrices S and G of distances

As distances are not independent data, use **Mantel’s test**:

- permute P times the rows and columns of S;
- compute the corresponding correlation coefficients: $\text{Cor}^p(S^p, G^p)$.

and use it as an empirical distribution for the independence between S and G.

But (here) S and G are built from the same network: they are correlated and permuting rows and columns of G does not respect the dependency structure and is not the empirical distribution of the null hypothesis: social distances are not related to spatial locations.
Standard approach: Mantel’s test

Test of the correlation between two matrices S and G of distances

As distances are not independent data, use Mantel’s test:

- permute P times the rows and columns of S;
- compute the corresponding correlation coefficients: $\text{Cor}^p(S^p, G^p)$.

and use it as an empirical distribution for the independence between S and G.

But (here) S and G are built from the same network: they are correlated and permuting rows and columns of G does not respect the dependency structure and is not the empirical distribution of the null hypothesis:

$social distances are not related to spatial locations$
Adapting Mantel’s test

Permutation test based on the bipartite graph

Repeat P times

1. permute spatial labels between transactions (empirical distribution of the null hypothesis on spatial labels);
2. compute the corresponding $(G^p_{ij})_{ij}$;
3. compute the corresponding correlation coefficient Cor^p between S and G^p.

Nathalie Villa-Vialaneix (ERCIM 2013)

Permutation tests for labeled network analysis

London, December 14th
Results obtained with various social distances

Permutation test based on adjacency matrix

Density

Correlation coefficient
Results obtained with various social distances
Results obtained with various social distances

Permutation test based on shortest paths

Correlation coefficient vs. Density

Graph showing the distribution of correlation coefficients.
Conclusion

- Spatial indexes can help describe and analyze the distribution of a given variable on the nodes of a network;
- Permutation tests can be used to analyze the correlation between the network structure and node labels for various types of labels.

Related work:
[Laurent and Villa-Vialaneix, 2011, Villa-Vialaneix et al., 2012]
Thank you for your attention... Any question?

Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation.

Using spatial indexes for labeled network analysis.
Information, Interaction, Intelligence (i3), 11(1).

Notes on continuous stochastic phenomena.

A central limit theorem with non-parametric applications.

Spatial correlation in bipartite networks: the impact of the geographical distances on the relations in a corpus of medieval transactions.