Permutation tests for labeled network analysis

Nathalie Villa-Vialaneix http://www.nathalievilla.org

nathalie.villa@univ-paris1.fr

ERCIM 2013, London, 14-16 December 2013

Joint work with *Thibault Laurent* (Toulouse School of Economics) *Bertrand Jouve* (Université Lyon 2), *Fabrice Rossi* (Université Paris 1) & *Florent Hautefeuille* (Université Toulouse 2)

Outline

1 Settings and scope

2 Permutation test for numeric labels or factors

3 Permutation test for spatial labels

Framework

Data: A weighted undirected **network/graph** \mathcal{G} with *n* **nodes** x_1, \ldots, x_n and **weight matrix** W st: $W_{ij} = W_{ji} \ge 0$ and $W_{ii} = 0$.

Used to represent **relations between entities** (social network, gene regulation network, ...)

Permutation tests for labeled network analys

Framework

Data: A weighted undirected **network/graph** \mathcal{G} with *n* **nodes** x_1, \ldots, x_n and **weight matrix** W st: $W_{ij} = W_{ji} \ge 0$ and $W_{ii} = 0$. For each node, an **additional information**

$$C: x_i \rightarrow c_i$$

 c_i : numeric ($c_i \in \mathbb{R}$), factor ($c_i \in \{m_1, \ldots, m_k\}$) or spatial information.

Examples: Genders in a social network, Functional groups genes in a gene regulation network, Weight of people in a social network, Number of visits of a web page in WWW, Place of home in a social network.

Nathalie Villa-Vialaneix (ERCIM 2013)

Permutation tests for labeled network analys

Questions?

Is there a link between the node labels $(c_i)_i$ and the network structure?

Questions?

Is there a link between the node labels $(c_i)_i$ and the network structure?

- For a **factor label**, are the nodes labelled with a given value more connected to nodes with the same value than expected? less connected?
- For a **numerical label**, are the numerical values of the nodes more correlated to the values of connected nodes than expected?
- For a **spatial label**, is there a stronger/smaller proximity than expected between the spatial labels of connected nodes?

where "expected" means: in comparison to a random distribution over the network.

Analogy between spatial statistics and network analysis

Spatial statistics: spatial units $(x_i)_i$ frequently described by a spatial matrix *W* st W_{ij} encodes adjacency between x_i and x_j (sometimes row/column normalized)

Network analysis: nodes $(x_i)_i$ described by a neighbourhood matrix W, which is symmetric

Outline

Settings and scope

2 Permutation test for numeric labels or factors

3 Permutation test for spatial labels

Join Count Statistics

Binary labels: $c_i \in \{0, 1\}$. General form:

$$JC = rac{1}{2}\sum_{i
eq j}W_{ij}\xi_i\xi_j$$

where ξ_i is either c_i or $1 - c_i$.

э

Join Count Statistics

Binary labels: $c_i \in \{0, 1\}$. General form:

$$JC = rac{1}{2}\sum_{i
eq j}W_{ij}\xi_i\xi_j$$

where ξ_i is either c_i or $1 - c_i$.

Basic interpretation: JC_1 "large" (/"small") \Leftrightarrow nodes labelled "1" tends to be linked to nodes labelled the same way (/the opposite way)

Join Count Statistics

Binary labels: $c_i \in \{0, 1\}$. General form:

$$JC = rac{1}{2}\sum_{i
eq j}W_{ij}\xi_i\xi_j$$

where ξ_i is either c_i or $1 - c_i$.

Basic interpretation: JC_1 "large" (/"small") \Leftrightarrow nodes labelled "1" tends to be linked to nodes labelled the same way (/the opposite way) **Statistical significance**: When is JC_1 significantly large or small?

- Method 1: [Noether, 1970] JC₁ is asymptotically normally distributed but requires additional assumptions on the network structure and not valid for small networks:
- Method 2: Monte Carlo approach: Randomly permute c_i over the nodes, P times \Rightarrow empirical distribution of JC_1 compared to the actual JC₁.

A toy example: "Les Misérables"

Data: Co-appearance network of the novel "Les Misérables" (Victor Hugo) where the nodes are labelled with gender (F/M).

A toy example: "Les Misérables"

Data: Co-appearance network of the novel "Les Misérables" (Victor Hugo) where the nodes are labelled with gender (F/M).

Empirical distribution with Monte Carlo approach (P = 1000)

A toy example: "Les Misérables"

Data: Co-appearance network of the novel "Les Misérables" (Victor Hugo) where the nodes are labelled with gender (F/M).

Estimated p-value and conclusion

Gender	Join count value	Large	Small
F	55	0.7932	0.2068
М	520	0.0224	0.9755

Moran's I

Numeric labels: $c_i \in \mathbb{R}$. [Moran, 1950], / statistics:

$$I = \frac{\frac{1}{2m} \sum_{i \neq j} W_{ij} \bar{c}_i \bar{c}_j}{\frac{1}{n} \sum_i \bar{c}_i^2}$$

where
$$m = \frac{1}{2} \sum_{i \neq j} W_{ij}$$
 and $\bar{c}_i = c_i - \bar{c}$ with $\bar{c} = \frac{1}{n} \sum_i c_i$.

э

Moran's I

Numeric labels: $c_i \in \mathbb{R}$. [Moran, 1950], / statistics:

$$I = \frac{\frac{1}{2m}\sum_{i\neq j}W_{ij}\bar{c}_i\bar{c}_j}{\frac{1}{n}\sum_i\bar{c}_i^2}$$

where $m = \frac{1}{2} \sum_{i \neq j} W_{ij}$ and $\bar{c}_i = c_i - \bar{c}$ with $\bar{c} = \frac{1}{n} \sum_i c_i$. Interpretation: *I* "large" \Leftrightarrow nodes tend to be connected to nodes which have similar labels

Moran's I

Numeric labels: $c_i \in \mathbb{R}$. [Moran, 1950], / statistics:

$$I = \frac{\frac{1}{2m}\sum_{i\neq j}W_{ij}\bar{c}_i\bar{c}_j}{\frac{1}{n}\sum_i\bar{c}_i^2}$$

where $m = \frac{1}{2} \sum_{i \neq j} W_{ij}$ and $\bar{c}_i = c_i - \bar{c}$ with $\bar{c} = \frac{1}{n} \sum_i c_i$. **Interpretation**: *I* "large" \Leftrightarrow nodes tend to be connected to nodes which have similar labels **Deriving a test for** *I*: once again, **asymptotic normality can be proved**

but using a Monte Carlo simulation is useful for small network cases.

Outline

Settings and scope

2 Permutation test for numeric labels or factors

3 Permutation test for spatial labels

Relational data coming from a large corpus of medieval documents 1/2

A large corpus of notarial acts

The corpus has been re-written by a feudist during the XIXe century and is kept at the **archives départementales du Lot** (Cahors, France)

- notarial acts related to rents (mostly "baux à fief");
- established between 1250 and 1500;
- in the seigneurie (about 10 little villages) called Castelnau Montratier (Lot, France).

Relational data coming from a large corpus of medieval documents 2/2

Defining a bipartite graph:

- nodes: transactions and individuals (3 918 nodes)
- edges: an individual directly involved in a transaction (6 455 edges)
- labels: for individuals (name, role...), for transactions (place: parish, date...)

3 > < 3

Spatial labels

transactions are spatially localized: 45 parishes (known positions); **Question**: What is the impact of the spatial locations of lands exchanged in the transactions on the way the individuals interact?

Graphs built from medieval documents

From the bipartite graph, define a projected graph:

- nodes are the individuals
- an edge connects two individuals if they are involved in the same transaction (edges can eventually be weighted)

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

1 shortest path length on the graph;

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

- 1 shortest path length on the graph;
- **2** similarities based on the adjacency matrix:

 $A_{ij} = \begin{cases} 1 & \text{si les sommets } i \text{ et } j \text{ sont liés par une arête} \\ 0 & \text{sinon.} \end{cases}$

Quantifying the interactions between individuals

Idea: Use the previous graph as a measure of social distance.

Used dissimilarities/similarities:

- 1 shortest path length on the graph;
- **2** similarities based on the adjacency matrix: regularized versions of the Laplacian $(L = \text{Diag}(d_i)_i A$ where d_i is the degree of node *i*):

 1^{+}

e.g., "commute time kernel" [Fouss et al., 2007]

Quantifying spatial distances between individuals $(G_{ij})_{ij}$

Idea:

- List of parishes cited in the transactions in which the individual is involved;
- Center of gravity of these locations.

Quantifying spatial distances between individuals $(G_{ij})_{ij}$

Idea:

- List of parishes cited in the transactions in which the individual is involved;
- Center of gravity of these locations.

Spatial distance: distance between centers of gravity.

Standard approach: Mantel's test

Test of the correlation between two matrices S and G of distances

As distances are not independent data, use Mantel's test:

- permute *P* times the rows and columns of *S*;
- compute the corresponding correlation coefficients: $\operatorname{Cor}^{p}(S^{p}, G^{p})$.

and use it as an empirical distribution for the independence between S and G.

Standard approach: Mantel's test

Test of the correlation between two matrices S and G of distances

As distances are not independent data, use Mantel's test:

- permute *P* times the rows and columns of *S*;
- compute the corresponding correlation coefficients: $\operatorname{Cor}^{p}(S^{p}, G^{p})$.

and use it as an empirical distribution for the independence between S and G.

But (here) *S* and *G* are built from the same network: they are correlated and permuting rows and columns of *G* does not respect the dependency structure and is not the empirical distribution of the null hypothesis:

social distances are not related to spatial locations

Adapting Mantel's test

Permutation test based on the bipartite graph

Repeat *P* times

- permute spatial labels between transactions (empirical distribution of the null hypothesis on spatial labels);
- 2 compute the corresponding $(G_{ii}^{\rho})_{ij}$;
- Output the corresponding correlation coefficient Cor^p between S and G^p.

Results obtained with various social distances

Nathalie Villa-Vialaneix (ERCIM 2013) Permutation tests for labeled network analysis London, December 14th

Results obtained with various social distances

Nathalie Villa-Vialaneix (ERCIM 2013) Permutation tests for labeled network analysis London, D

Results obtained with various social distances

Permutation test based on shortest paths

Conclusion

- Spatial indexes can help describe and analyze the distribution of a given variable on the nodes of a network;
- Permutation tests can be used to analyze the correlation between the network structure and node labels for various types of labels.

Related work:

[Laurent and Villa-Vialaneix, 2011, Villa-Vialaneix et al., 2012]

Thank you for your attention... Any question?

Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007).

Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation.

IEEE Transactions on Knowledge and Data Engineering, 19(3):355–369.

Laurent, T. and Villa-Vialaneix, N. (2011). Using spatial indexes for labeled network analysis. *Information, Interaction, Intelligence (i3)*, 11(1).

Moran, P. (1950).

Notes on continuous stochastic phenomena. *Biometrika*, 37:17–23.

Noether, G. (1970).

A central limit theorem with non-parametric applications. Annals of Mathematical Statistics, 41:1753–1755.

Villa-Vialaneix, N., Jouve, B., Rossi, F., and Hautefeuille, F. (2012). Spatial correlation in bipartite networks: the impact of the geographical distances on the relations in a corpus of medieval transactions.

Revue des Nouvelles Technologies de l'Information, SHS_1:97 $_{\overline{e}}$ 1,10. $_{\pm}$,