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Network data

Many sources of large networks
I social networks (emails, collaborations, phone calls, etc.)
I technological networks (Internet, etc.)
I biological networks (metabolic pathways, gene regulation,

gene interactions, etc.)

Scope of the talk: A graph G, with vertices {x1, x2, . . . , xn},
undirected and weighted with weights W such that: wii = 0 (no
loop), wij = wji ≥ 0 (wij > 0⇔ ∃ edge between nodes xi and xj).
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Network data analysis

Over one hundred vertices, pure manual analysis is infeasible
⇒ need for automatic support for exploratory analysis:
I node/edge measures (e.g., degree distribution, betweenness,

...)
I visualization (e.g., force directed algorithm)
I node clustering (community extraction)
I supervised analysis
I ...
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Visualization from clustering

Large graph visualization is difficult.

A standard solution: simplify the graph prior drawing. More
precisely

1. identify dense clusters of nodes

2. draw the corresponding graph of clusters

[Newman and Girvan, 2004]
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Drawing a clustered graph

I Given a partition (Ck )k=1,...,C
I represent each cluster by a glyph (e.g., a circle) with surface

proportional to |Ck |

I draw a segment between glyphs Ck and Cl with thickness
proportional to

∑
i∈Ck , j∈Cl

Wij

I The simplification induced by the clustering has to be
faithful: each cluster should be as dense as possible (i.e.,∑

i,j∈Ck
Wij should be high compared to the other weights).

I The graph induced by the clustering has to be readable:
edge crossing should be minimized.
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Two approaches based on organizing maps

Main idea: organizing the clustering on a grid to constrain clusters’
position and to represent the most connected clusters close to
each others.

1. Kernel SOM: generalization of Self-Organizing Maps to graph
by the use of a kernel

2. Organized modularity optimization: extension of a
well-known clustering measure for graphs to organized
clustering
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Basic ideas about SOM

Project the graph on a squared grid (each square of the grid is a
cluster)

Project the graph on a squared grid (each square of the grid is a
cluster) such that:
I the nodes in a same cluster are highly connected
I the nodes in two close clusters are also (less) connected
I the nodes in two distant clusters are (almost) not connected
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SOM and kernel SOM

Original SOM algorithm (batch): x1, . . . , xn ∈ R
d

1. Initalization: Initialize randomly p0
1 , ..., p0

M in Rd

2. For l = 1, . . . , L do

3. Assignment: for all i = 1, . . . , n do

f l(xi) = arg min
j=1,...,M

‖xi − p l−1
j ‖Rd

4. Representation: for all j = 1, . . . ,M,

p l
j = arg min

p∈Rd

n∑
i=1

h l(f l(xi), j)‖xi − p‖2
Rd

Online versions by [Lau et al., 2006]



SOM and kernel SOM

Kernel SOM (batch): xi ∈ G defined by a kernel relation: K(xi , xj)
⇒ ∃ φ : G → (H , 〈., .〉H): K(x, x′) = 〈φ(x), φ(x′)〉H

1. Initalization: Initialize randomly p0
j =
∑n

i=1 γ
0
jiφ(xi)

2. For l = 1, . . . , L do

3. Assignment: for all i = 1, . . . , n do

f l(xi) = arg min
j=1,...,M

‖φ(xi) − p l−1
j ‖H

4. Representation: for all j = 1, . . . ,M,

γl
j = arg min

γ∈Rn

n∑
i=1

h l(f l(xi), j)‖φ(xi) −
n∑

k=1

γkφ(xk )‖2
H

[Villa and Rossi, 2007, Hammer and Hasenfuss, 2007]

Online
versions by [Lau et al., 2006]
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Which kernels?

Laplacian: L = (Li,j)i,j=1,...,n where

Li,j =

{
−wi,j if i , j
di =

∑
j,i wi,j if i = j

;

Regularized versions such as
I Heat kernel

[Kondor and Lafferty, 2002, Smola and Kondor, 2003]: for
β > 0, Kβ = e−βL =

∑+∞
k=1

(−βL)k

k ! .

I Generalized inverse of the Laplacian [Fouss et al., 2007] :
K = L+.
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A first example: a medieval social network

Example from [Boulet et al., 2008]
In Cahors (Lot, France), stands a big corpus of 5000 agrarian
contracts coming from 4 seignories (about 25 little villages) and
being established between 1240 and 1520 (just before and after
the hundred years’ war).
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Network of relations between
peasants based on common ci-
tations in a given contract.



A first example: a medieval social network

Example from [Boulet et al., 2008]
In Cahors (Lot, France), stands a big corpus of 5000 agrarian
contracts coming from 4 seignories (about 25 little villages) and
being established between 1240 and 1520 (just before and after
the hundred years’ war).

Graph of clusters: the commu-
nities have relations with time
and space.
The leading people are empha-
sized.
But The biggest communities
are still very complex.



Modularity [Newman and Girvan, 2004]

Popular quality measure for graph clustering: a partition of the
vertices in C clusters, (Ck )k=1,...,C has modularity:

Q(C) =
1

2m

C∑
k=1

∑
i,j∈Ck

(Wij − Pij)

where Pij are weights corresponding to a “null model” where the
weights only depend on the nodes properties and not on the
cluster they belong to.

More precisely,

Pij =
didj

2m

with di = 1
2
∑

j,i Wij is the degree of a vertex xi .
A “good” clustering should maximize Q.
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Interpretation

I Q increases when (xi , xj) are in a same cluster and have true
weight Wij greater than the ones expected in the null model,
Pij

I Q increases when (xi , xj) are in a two different clusters and
have true weight Wij smaller than the ones expected in the
null model, Pij because

Q(C) +
1

2m

∑
k,k ′

∑
i∈Ck , j∈Ck ′

(Wij − Pij) = 0.

I Contrary to the minimization of the number of edges between
clusters, modularity can help to separate nodes with high
degrees into different clusters more easily
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Drawing optimized clustering

Combine:
I high modularity to ensure high intra clusters density and low

external connectivity
I little edge crossing

by:
I Classic solution: relying on graph drawing algorithm after

maximization of the modularity

I Extend the modularity to a criterium adapted to a prior
structure (like a grid)
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Self Organizing Map principle

For data in Rd , SOM minimizes (over the clustering and the
prototypes (pk ))

C∑
k=1

n∑
i=1

Sf(xi),k ‖xi − pk ‖
2
Rd

where:
I (pk ) are the prototypes (one for each cluster of the grid)

representing the cluster in the original space (Rd)
I f(xi) is the cluster, on the grid, where xi is classified
I Skl encodes the prior structure: close to 1 for close clusters

and close to 0 for distant clusters

This corresponds to a soft membership: xi belongs to Ck with
membership Sf(xi),k .
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Organized modularity [Rossi and Villa-Vialaneix, 2010]

Same idea: encode a prior structure via a matrix S.
Maximize:

SQ =
1

2m

∑
i,j

Sf(i)f(j)(Wij − Pij)

Hence:
I if a pair of vertices (xi , xj) is such that Wij > Pij , SQ increases

with the closeness of f(xi) and f(xj) in the prior structure
I if a pair of vertices (xi , xj) is such that Wij < Pij , SQ increases

if f(xi) and f(xj) are distant in the prior structure
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Optimization

The clustering is represented by a n × C assignment matrix M with
Mik = δf(i)=k . The goal is then to maximize

SQ = F(M) =
1

2m

∑
i,j

∑
k ,l

Mik SklMlj(Wij − Pij)

Combinatorial problem is NP-complet⇒ use of deterministic
algorithm:
I Given a temperature 1

β , assume a Gibbs distribution on the

solution space P(M) = 1
ZP

eβF(M)

I Compute E(M) with respect to P
I At the limit β→ +∞, E(M) converges to M∗ where M∗ realizes

the maximum of F(M)
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Mean field approximation

Problem: ZP =
∑

M eβF(M) is hard to compute (Cn values for M)
except when the distribution factorizes (use of block calculations)
But SQ does not factorize!!!

Solution: approximate P(M) by a distribution that factorizes:
I P(M) is approximated by

R(M,E) =
eβ
∑

i,k Mik Eik∑
N eβ

∑
i,k Nik Eik

.

For the distribution R(M,E), Mik are independants for
i = 1, . . . , n.

I The mean field E is tuned by minimizing the
Kullback-Leibler divergence :
KL(R |P) =

∑
M R(M,E) log R(M,E)

P(M)
⇒ mean field equations:

∂ER(F(M))
∂Ejl

=
∑

k
∂ER(Mjk )

∂Ejl
Ejk

I Eik and ER(Mik ) are iteratively estimated by an EM-like
algorithm; at the limit, ER(Mik ) gives the probability of xi to
belong to cluster k for the optimal SQ
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Deterministic annealing

Algorithm

For increasing sequence β1, β2, . . . , βL ,

1. Initialize ER(M) randomly in [0, 1] such that
∑

k ER(Mik ) = 1
2. Repeat for l = 1, . . . , L

2.1 Compute E : Eik = 2
∑

j,i
∑

k ′ ER(Mjk ′)Skk ′Bji where
B = 1

2m (W − P);
2.2 Compute ER(M) : ER(Mik ) = eβl Eik∑

k ′ eβl Eik ′

3. Threshold ER(Mik ) into clustering:

Mik = arg max
k=1,...,C

ER(Mik ).



A toy example

A toy example [Zachary, 1977]: Zachary’s karate club (friendship
social network between the 34 members of a Karate club at a US
university in the 70s).
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Optimization of organized modularity on “Karate”

For a choice of neighborhood relationship leading to 4 non empty
clusters on a squared grid of size 2 × 2:
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Optimization of organized modularity on “Karate”

For a choice of neighborhood relationship leading to 4 non empty
clusters on a squared grid of size 2 × 2:
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For a choice of neighborhood relationship leading to 4 non empty
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Optimization of organized modularity on “Karate”

For a choice of neighborhood relationship leading to 4 non empty
clusters on a squared grid of size 2 × 2:
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Comparisons on a toy example: “Karate”

Optimal solution obtained with SOM (various kernels tested):
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More comparisons on larger graphs

Co-appearance network from “Les Misérables” [Knuth, 1993]
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77 nodes
density = 8.7%
transitivity = 49.9 %



More comparisons on larger graphs

Neural network of worm C. Elegans (undirected version deduced
from [Watts and Strogatz, 1998])

453 nodes
density = 2%
transitivity = 12.4%



More comparisons on larger graphs

E-mail exchanges between members of the University Rovira i
Virgili (Tarragona) [Guimera et al., 2003]

1 133 nodes
density = 0.9%
transitivity = 16.6%



Methodology

Comparison of:
I Direct approach (modularity optimization + representation of

the graph of clusters)
I Kernel SOM with various kernels: heat kernel, generalized

inverse of the Laplacian, modularity kernel (i.e., the positive
part of W −P which mimics the optimization of the modularity)
and spectral SOM (based on the first C eigenvectors of the
Laplacian)

I SQ optimization

Parameters varied:
I size of the prior grid or number of clusters
I for organized clusterings, type of neighborhood on the grid
I for SOM, random or PCA initialization and kernel parameter

for the heat kernel

Selection of the solutions: Pareto points according to modularity
and number of edge crossing
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A brief comment on SOM solutions with “Les Misérables”
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Analysis of the Pareto points for “Les Misérables”
Method Number Modularity Nb of pairs Id

of clusters of cut edges

Organized mod. 42 (7) 0.5638 1 M5
Organized mod. 52 (7) 0.5652 3 M6

32 (6) 0.5472 0 M7
Modularity optimization 8 (5) 0.5472 0 M8

M5:

●

M8:

●
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Analysis of the Pareto points for “C. Elegans”

Method Number Modularity Nb of pairs Id
of clusters of cut edges

SOM (GInv) 32 (9) 0.3228 14 CE1
32 (9) 0.3000 7 CE2
32 (8) 0.2936 1 CE3

Organized mod. 32 (7) 0.4321 19 CE6
Organized mod. 32 (8) 0.4063 15 CE7
Modularity optimization 18 (8) 0.4383 27 CE8



Analysis of the Pareto points for “C. Elegans”
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Analysis of the Pareto points for “Email”
Method Number Modularity Nb of pairs Id

of clusters of cut edges

Organized mod. (Gaussian) 32 (8) 0.5694 47 E6
42 (8) 0.5693 44 E7
42 (7) 0.5554 25 E8
32 (7) 0.5456 23 E9
52 (6) 0.5401 11 E10

Modularity optimization 11 (8) 0.5736 56 E11

E10

●

25

16

5

17 20

3

E11

●

●

●

●

●

●

●

●
1

9

8

6

11

4

2

10



Analysis of the Pareto points for “Email”
Method Number Modularity Nb of pairs Id

of clusters of cut edges
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Conclusion

Organized clustering for graph
I finds clusters adapted to visualization
I competes with two steps approaches: with a little cost in

clustering quality, can provide a more simplified graph

Organized modularity
I seems to be more performant than kernel SOM: hub are

separated easier
I has a computational cost that remains acceptable:

comparable to modularity optimization (but more parameters
to tune)
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