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Abstract

Background: Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges.
A very large variability in the response can be observed across individuals, depending on numerous conditioning
factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and
resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is
increasing progressively towards the production of animals with a high level of production under a wide range of
climatic conditions and management systems, together with a lower environmental impact and a high level of animal
welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a
systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological
responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in
120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole
blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal
aspect of the data.

Results: Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to
LPS were observed, with a decrease of total count, maximal at t = +4 h, and the mirror changes in the respective
proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t = +1 h. An
integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing
complementary studies focused on the LPS-stimulated inflammatory response.

Conclusions: The present study demonstrates the specific biomarkers indicative of an inflammation in swine.
Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making
them good candidate markers for evaluating the efficacy of anti-inflammatory drugs.
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Background
Over time, farms have evolved towards factory production
units. This has led to a decline of the welfare of ani-
mals that becomes an important concern for consumers
[1]. Moreover, this type of farming has led to the selec-
tion of animals with high production traits such as rapid
growth, lean meat, or large litters. However, the strong
selection focus on these characteristics is suspected to
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reduce functional traits, such as viability of the newborns
or disease resistance. Consequently, the genetic potential
of animals is usually not fully expressed in commercial
conditions, due to the limiting influence of the environ-
ment. Robustness is a specific quality of an individual
to express a high production potential in a wide variety
of environmental conditions and is now a major specific
breeding goal in the context of sustainable farm ani-
mal breeding. Various strategies are available to increase
robustness, and we have suggested that the reinforce-
ment of the neuroendocrine stress responses may favour
the processes of adaptation and dampen the negative
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consequences of the environment [2]. The hypothalamic-
pituitary-adrenocortical (HPA) axis is the main neuroen-
docrine system involved in adaptation to stress and is
strongly influenced by genetic factors [3]. It is there-
fore a primary candidate for the selection of more robust
animals [2].
In modern intensive livestock production, pigs are

easily threatened by different types of inflammation.
Immunological stress is a comprehensive process involv-
ing immunological, neurological, and endocrinological
responses [4]. The reciprocal “subjugation” of the brain
and the immune system via cytokines and stress hor-
mones is now well demonstrated [5, 6]. The resulting bal-
ance has more recently been demonstrated at the level of
blood cell transcriptome [7], with chronic stress increas-
ing the expression of genes regulated by inflammatory
mediators and decreasing those regulated by glucocorti-
coid hormones [8]. This approach has been used to eval-
uate the negative consequences of adverse environmental
conditions, mostly in humans but also in farm animals
(horses [9]). More recently, individual differences have
also been described as related to personality dimensions
in humans [10]. However the relationships with individual
variations of HPA axis activity, including genetic factors,
is still unexplored.
We have previously shown large variations in biologi-

cal and transcriptomic responses to an ACTH stimulation
test [11]. Indeed, the adrenal response to ACTH is a
major source of variability of HPA axis function [12]. The
present study aims at describing blood transcriptomic,
hormonal, and metabolic responses of pigs to a systemic
challenge using lipopolysaccharide (LPS), a major com-
ponent of the outer membrane in gram-negative bacte-
ria [13]. LPS provokes an acute inflammatory syndrome
resulting eventually in all kinds of pathophysiological
damages [14]. The objective is to analyze the individual
variation of the biological responses in relation to the
activity of the HPA axis. This was assessed through the
level of cortisol released by LPS (this experiment) and
also, in the same animals, through the level of cortisol
released after an ACTH stimulation test (in an experiment
previously published [11]).

Methods
Animals, treatment and blood sampling and biological
analyses
The same 120 piglets (63 females and 57 males) as
described in [11] were used for this study. In addition
to the ACTH stimulation test, previously described, each
animal was injected in the neck muscles with LPS at
8 weeks (E. coli serotype 055:B5, Sigma-Aldrich, Saint
Quentin Fallavier, FR) at a dose of 15 μg/kg body
weight. Injections occurred from 10:00-11:00 AM to avoid

nycthemeral variations. Blood samples were collected
before the injection (t = 0) and 1 h (t = +1), 4 h (t = +4)
and 24 h (t = +24) after injection with the same protocol
as described in [11].
Cortisol, glucose, free fatty acid (FFA), blood cell counts

(including: white cells count, proportion of lymphocytes,
monocytes and granulocytes, red cells count, hematocrit,
concentration of hemoglobin, red cells width and vol-
ume, platelets count and platelets width and volume) were
obtained using the same protocol as in the previous study.
Fifteen biological variables were measured on the 120
pigs in addition to birth and weaning weights. All these
variables were preprocessed for outlier and missing value
correction and to ensure normality as in the previous
study.

Whole blood transcriptome
A subset of 30 females from 2 batches only was used
to study pangenomic expression in whole blood cells at
each time point (120 samples). Total RNA isolation and
purification was done as described in [11].
Gene expression analysis was performed at the GeT-

TRiX facility (GénoToul, Génopole Toulouse Midi-
Pyrénées) using Agilent SurePrint G3 porcine microarray
GPL16524 (Agilent, 8×60 K) following the manufac-
turer’s instructions (Agilent Technologies, Santa Clara,
California). For each of 120 samples, Cyanine-3 (Cy3)
labeled cRNA was prepared from 200 ng of total RNA
using the One-Color Quick Amp Labeling kit (Agilent)
according to the manufacturer’s instructions, followed by
Agencourt RNAClean XP (Agencourt Bioscience Corpo-
ration, Beverly, Massachusetts). 600 ng of Cy3-labelled
cRNA were hybridized on the microarray slides follow-
ing the manufacturer’s instructions. Immediately after
washing, the slides were scanned on Agilent G2505C
Microarray Scanner using Agilent Scan Control A.8.5.1
software and fluorescence signal extracted using Agilent
Feature Extraction software v10.10.1.1 with default
parameters (grid 037880_D_F_20120213 and protocol
GE1_1010_Sep10).

Hybridization protocol
Blood samples of 2 pigs at one time step each were of
poor quality and thus not used. The same experimental
design than the one described in [11] was used to secure
the kinetics of the response for each individual and to pre-
vent confounding effects between batch and array. After
quality control and filtering, 27,837 probes were kept and
log2 transformed. Technical biases and missing data were
handled similarly than in the previous study.

Fluidigm Biomark RT-PCR
For validation of array data by Fluidigm technology 22 ani-
mals (88 samples) were kept to fit the technical constraints
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of this technique. Total RNA (1 μg) used in microar-
ray experiments was reverse-transcribed as previously
described [15]. Primer sequences for genes were designed
using Primer3plus software (http://primer3plus.com) and
are given in Additional file 1. The TFRC gene (trans-
ferrin receptor) and EPRS gene (glutamyl-prolyl-tRNA
synthetase) were used as internal controls. Pre-amplified
samples were analyzed with a 96×96 Dynamic Array™ IFC
(Fluidigm) following the protocol defined by [16], with
some modifications. All measurements were performed
on the same plate. Each gene was tested twice for each
sample. Four dilution points containing a pool of all sam-
ples were used to determine PCR efficiency. Data were
analyzed using BioMark Gene Expression Data Analy-
sis software (Fluidigm) to obtain Ct values. The Pfaffl
method was applied to compute the relative expression
of each gene [17]. Pearson correlations were computed to
compare the expression values of microarray and quan-
titative real-time PCR. Quantitative RT-PCR data were
also analyzed for time effect by ANOVA with repeated
measurements for every gene.

Statistical analyses
All analyses were performed with the R software, ver-
sion 3.2.2 [18]. They were designed so as to address two
main questions: the first one is the study of the evolution
over time of the different variables (plasma metabolites,
cortisol and gene expression) after LPS injection. The sec-
ond one is the study of the relation between the different
variables and one of the most relevant measure of sen-
sitivity of the adrenals, the cortisol level one hour after
ACTH injection (data from [11], obtained on the same
animals).
Longitudinal data analysis of the evolution over time

of the different variables can be performed using differ-
ent statistical methods. A very common approach is to
fit curves (for instance splines as in [19, 20]) a as prior
processing to the statistical analysis. However, four time
steps are too few number of time points to obtain an accu-
rate fit. The analysis was thus performed using two main
approaches: the first one relies on linear models with the
time as a factor covariate and the second one is based on
a decomposition of sources of variations, as was already
proven successful for repeated measurements analysis in
[21] and for longitudinal data analysis in [11].

Statistical analysis of plasmametabolites and cortisol
First, all variables were subjected to a one-way ANOVA
with repeated measures and the time step as a factor
covariate. In order to control the false discovery rate
(FDR) [22], p-values were adjusted using a Benjamini-
Hochberg (BH) approach (Table 1). Variables with an
adjusted p-value (FDR <0.05) were then subjected to 3

paired t-tests to assess the difference between t = 0 and
t = +1, between t = 0 and t = +4 and between t = 0 and
t = +24. The full list of p-values was adjusted using a BH
approach (Fig. 1).
In addition, the influence of sex on the biological vari-

ables was tested using a two-way ANOVA with repeated
measures including sex as a covariate. p-values were
adjusted using a BH approach.
Cortisol levels measured one hour after ACTH injection

are the most relevant measure to assess the sensitivity of
the adrenals to ACTH (data from [11]). Hence, correla-
tions between biological variables at t ∈ {0,+1,+4,+24}
and the level of cortisol one hour after ACTH injec-
tion were investigated using t-tests of the linear regres-
sion on ACTH level. p-values were adjusted using a BH
approach.

Statistical analysis of the transcriptome
Differentially expressed probes (DEP)
The whole blood is composed of different types of white
cells with distinct roles which express different kinds of
transcripts [23]. It is thus likely that a modification in
blood cell composition may influence the gene expres-
sion level without having cells actually express transcripts
differently. As blood cell composition was found to vary
over time after LPS injection, we used the Lymphocyte

Granulocyte (L/G)
ratio as a covariate in our analyses.
Three different approaches were used to identify rel-

evant probes. The first two are longitudinal analyses
aiming, respectively, at identifying probes with an expres-
sion significantly varying from their basal levels after LPS
injection and probes with a varying contribution of the
L/G ratio to their expressions after LPS injection. The
last analysis searched for probes correlated to the level of
cortisol one hour after ACTH injection.
Firstly, we identified probes differentially expressed at

each time step while taking blood cell composition into
account. Blood cell composition was measured by the
L/G ratio. Three models (one for each time step t′ where
t′ ∈ {+1,+4,+24}) were fitted to each probe using
observations at t = 0 and t = t′.

exprit = μ0 + τt′I{t=t′} + βt′L/Git + εit (1)

with i = 1, . . . n is animal i. exprit is the expression of the
probe being studied for animal i at time step t (t ∈ {0, t′}),
μ0 is the specific contribution of time step t = 0, τt′ is the
effect of time step t′, βt′ is the effect of L/G ratio in this
model and εit ∼ N

(
0, σ 2

e
)
is an error term.

We then tested the contribution of time step t′ against
the null hypothesis H0: τt′ = 0. The full list of p-values

http://primer3plus.com
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Table 1 Reference values (at t = 0) for the biological variables, birth weight and weaning weight (n = 120)

Units Min Max Mean SEM F

Tympanic temperature °C 36.100 40.257 39.168 0.050 258.110

White cells log10(G/l) 0.491 1.472 1.188 0.011 572.970

Lymphocytes % 46.600 91.900 67.477 0.555 112.180

Monocytes % 3.900 16.200 8.557 0.191 69.500

Granulocytes % 2.500 35.600 22.608 0.527 78.210

L/G ratio 1.355 36.760 3.466 0.295 64.650

Red cells T/l 1.490 7.330 5.163 0.054 69.420

Mean corpuscular volume fl 39.700 63.700 52.008 0.333 62.120

Hematocrit % 6.800 37.400 26.828 0.299 78.990

Hemoglobin g/dl 6.900 12.800 8.947 0.092 46.680

Red blood cells distribution width fl 29.100 33.800 32.029 0.081 74.440

Platelets log10(G/l) 2.330 2.998 2.667 0.011 227.400

Mean platelet volume fl 7.600 13.000 9.682 0.102 71.210

Platelet distribution width % 9.600 12.000 10.771 0.045 122.790

Cortisol log10(ng/ml) 1.041 2.033 1.475 0.017 370.240

Free fatty acids
√

(mmol/l) 0.079 0.560 0.162 0.005 111.040

Glucose mmol/l 5.850 9.525 8.035 0.061 123.990

Bilirubin μmol/l 4.660 13.000 8.523 0.190 178.610

Birth weight kg 0.400 2.680 1.492 0.033

Weaning weight kg 5.460 16.564 9.486 0.174

Results of the ANOVA for time effect (F value): all variables varied significatively during the experiment, with an FDR < 10−12, except for the weights (not tested because
constant)

was globally adjusted using a Bonferroni approach. As the
Bonferroni approach exerts a more stringent control than
the BH approach, it was used to obtain a narrowed list
of the most significant probes. Probes with at least one
adjusted p-value< 0.01 were probes for which the expres-
sion adjusted by the L/G ratio was significantly different
from the basal level. In the sequel, this list of genes will be
referred to as (List1).
Secondly, we identified probes for which the L/G ratio

effect is different according to the time step. To that aim,
we compared a complete model, including all time step
contributions and the L/G ratio effect according to the
time step (Eq. (2)):

exprit = τt + βtL/Git + εit (2)

(with t ∈ {0, 1, 4, 24} and βt is the interaction effect
between time step t and the L/G ratio of individual i at
time step t), to a reduced model, including only the aver-
age L/G ratio and all time step contributions (Eq. (3)):

exprit = τt + βL/Git + εit . (3)

An F-test was then performed to test the null hypoth-
esis, H0: β0 = β1 = β4 = β24, against the alternate

hypothesis, H1: ∃t1, t2 such as βt1 �= βt2 . Multiple test-
ing was handled by applying a BH approach (FDR < 0.05).
Probes for which the test was significant were probes for
which the effect of L/G varied over time. In the sequel,
this list of genes will be referred to as (List2).
Finally, we studied correlations between all probes and

cortisol level when it reaches its peak in blood after LPS
injection. Thus, Pearson correlations, ρ, were computed
between DEP expression at each time step and cortisol
level at t = +4. A correlation test was then performed to
test the null hypothesis,H0: ρ = 0 againstH1: ρ �= 0. Mul-
tiple testing was handled by using a BH approach (FDR
< 5%). This list of genes will be referred as (List3) in the
sequel.
In addition, to link probes responding to a LPS injection

with a measure of the HPA axis activity, we studied corre-
lations between expression of all probes and the cortisol
level at one hour after ACTH injection, as measured on
the same pigs in [11].
All lists of DE probes were then annotated and dupli-

cated probes were removed by keeping only DEP with the
smallest FDR per annotated gene and all non-annotated
genes. Remaining genes will be referred as differentially
expressed genes (DEG) in the sequel.
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Fig. 1Mean evolution of the biological variables over time. Vertical bars correspond to + and - SEM at each point

Functional analysis
Enrichment analysis was performed using tools available
at WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)
[24, 25]. Entrez gene IDs were used as unique gene
identifiers. Target gene lists for main effects and inter-
actions and a background gene set consisting of all 9530
genes were used to identify enrichment in GO, KEGG,
Transcription Factor Target, Microarray Target, Protein
Interaction Network Module, and Phenotype Analysis in

WebGestalt using Fisher’s exact test and BH correction for
multiple testing.
Apathway is an interconnected arrangement of processes,

representing the functional roles of genes in the genome.
The biological processes in which individual genes may
participate were identified using the “Gene Ontology”
database AmiGO (http://amigo.geneontology.org). The
DEG were assembled into networks using Ingenuity Path-
way Analysis (IPA©) (http://www.ingenuity.com). This

http://amigo.geneontology.org
http://www.ingenuity.com
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application includes algorithms that automatically iden-
tify the biological pathways and functions of selected
genes. It is based on a large bibliographic database with
various types of interaction already identified between
pairs of genes. Every biological network extracted by IPA
corresponds to the best possible arrangement of the genes,
and are associated with a score derived from a p-value
(right-tailed Fisher’s exact test, − log10-transformed).

Time course analyses
In the case of time course analyses, the approach pre-
viously described (applying a univariate linear model on
each variable followed by multiple test correction) is com-
mon. However, this approach disregards the dependencies
between genes and does not allow for a global view of
the relationships between the repeated measurements in
high dimensional data. The multilevel approach, already
proven successful to investigate the relationships between
repeated measurements in [21] was thus used and com-
bined with multivariate data analysis methods.
The multilevel approach [21] is inspired by the mixed-

model framework and uses a split-up variation of the
(nT)×pmatrix X that contains the observations of p vari-
ables (clinical biology variables or gene expressions) on n
animals with T = 4 times of measurements:

X = X..︸︷︷︸
offset term

+ Xb︸︷︷︸
between-animal deviation

+ Xw︸︷︷︸
within-animal deviation

(4)

Similarly to what was performed in [11], multivariate
approaches were performed on Xw to bring out the most
relevant correlations between variables in the dataset,
independently from individual variations. First a multi-
level PCA was performed on the biological variables to
study the overall effect of LPS on plasma metabolites
and cortisol over time. Then, a multilevel multiple fac-
tor analysis (MFA) [26] was used to investigate the overall
relationships between clinical biology and transcriptomic
data.

Results
Plasma cortisol, metabolites, and blood cell counts
Baseline values of biological variables and the global
time effect, and birth and weaning weights are shown in
Table 1. Figure 1 shows the evolution of the main variables
over time.
Tympanic temperature peaked at t = +4 (40.8 °C vs

39.1 °C) and returned to basal levels at t = +24. A
decrease of total count of white blood cell count was
observed, maximal at t = +4 (5.70 vs 15.35 G/l) and
the mirror changes in the respective proportions of lym-
phocytes and granulocytes. This indicated that the lym-
phocytes/granulocytes ratio (L/G) was a good measure

to use in order to take into account these changes that
result mainly from the redistribution of lymphocytes into
the tissues [27]. The L/G ratio was maximal at t = +1
(9.32 vs 3.67) and back to basal levels at t = +4. The
red blood cell count and associated measures (hemat-
ocrit and hemoglobin concentration) showed a biphasic
change, with an initial increase, maximal at t = +4
(5.47 vs 5.16 T/l) and a subsequent long-lasting decrease
(4.82 T/l at t = +24). The platelet count showed a steady
decrease until at least t = +24 (284 vs 475 G/l). These
measures were not influenced by sex, except the mean
red cell volume and hematocrit that were slightly lower in
males (FDR <0.05).
Cortisol levels peaked at t = +4 with a 3.83-fold

increase (114.3 vs 29.8 ng/ml). Circulating glucose lev-
els were reduced by 26.9% to 5.95 mmol/l at t = +4.
The circulating concentration of free fatty acids increased
from 0.026 to 0.146 mmol/l at t = +4. None of these
biochemical measures was influenced by sex.

Overall effect of LPS on clinical biological variables
The overall effect of LPS over time was investigated
with a multilevel PCA (Fig. 2). The first component of
the multilevel PCA opposes the observations at t = 0
(negative coordinates on this axis) to the observations
at t = +4 (positive coordinates on this axis), this time
step corresponding to the peak of LPS effect. The sec-
ond component opposes the observations at t = +24
(positive coordinates on this axis) to the other observa-
tion times (negative coordinates on this axis). The rep-
resentation of the variables shows that the first axis is
mainly driven by an opposition between free fatty acids
(FFA), bilirubin, temperature and cortisol (high mea-
sures at t = +4), and white cell count and glucose (low
measures at t = +4). The second axis of the PCA is
driven by L/G ratio and platelet count that are high
at t = +1.
No biological variable was found to be correlated to

cortisol level one hour after ACTH injection.

Differentially expressed genes related to key immune
functions
In our study, we used a comprehensive gene expression
profiling by means of microarray analysis to identify clus-
ters of genes differentially expressed in peripheral blood
cells, taking into consideration the kinetic of the response
with 4 time points (t ∈ {0,+1,+4,+24}). LPS induces
dramatic changes in blood cell number and lympho-
cyte/granulocyte (L/G) ratio that introduces a confusion
between time and cell type effects, and a major challenge
for the interpretation of transcriptomic data. Therefore
we based the interpretation of the results on three differ-
ent lists of genes, (List1), (List2), and (List3).
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a

b

Fig. 2Multilevel PCA on the biological variables responding to LPS. Colors represent the time step; Black: t = 0; Red: t = +1; Green: t = +4;
Blue: t = +24; a: Projection of the individuals on dimensions 1 - 2; b: Projection of the variables on dimensions 1 - 2

All genes found to be differentially expressed after
ACTH injection in our previous study [11] were also
found in one of these three lists.

Analysis of each list of genes
The first list of genes (List1) consists of 9530 unique genes
(22,794 transcripts, Additional files 2 and 3) for which
the expression adjusted by the L/G ratio was significantly
different from basal level. (List1) was submitted to gene
ontology and enrichment analysis. These analyses showed
106 classes significant at FDR < 0.05. Due to the impor-
tant number of DEG, generic classes were removed (such

as morphogenesis, transcription, locomotion and others).
Only genes that were well-known and well described in the
literature were chosen to define a final selected list of 284
genes. These genes were grouped into 6 functional classes
that were all found enriched for genes (List1) (Immunity
and Inflammation, Chemotaxis, Apoptosis, Calcium ion
transport, Metabolism, Hormonal Response).
The “immunity and inflammation” class (175 genes)

is related to the inflammatory cascade after activation
of leukocytes by LPS via TLR4 receptor (a receptor for
bacterial lipopolysaccharide). TLR4 is a critical driver of
immune responses to bacterial infections. Signals from
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TLR4 promote NF-κB and AP-1 activation, leading to
inflammatory gene expression [28] (DEG for TLR4, TNF,
JUNB, and NF-B pathway).
The “chemotaxis” class is composed of 59 genes.

Among them ABHD2, ACADS, AIF1, ANXA7, ARPC1A,
ARPC2, CD97, CHL1, CLIC1, CNTFR, COQ3, DGKD,
DNASE2, GP1BA, GPI, HCLS1, HPS6, IL1RN, IL8RA,
KAT5, LOC100523056, LSP1, MAN2B1, PARK7, PTPN6,
SMAD7, SPG21, TMEM173, TMSB10, TMSB4X,
TRDMT1, and TSPO genes are related to immune cell
trafficking. This observation is in agreement with the
observed blood cell redistribution.
The “apoptosis” class (33 genes) includes C5AR1,

CCL24, CCR1, CCR3, CXCL13, IRG1, ALDOC, C3AR1,
CADM1, CAPN3, HEXA, ID3, MAEA, PLAU, PRDX5,
PROC, and CXCR2 genes related to apoptosis and inflam-
matory response, and TNFSF13B andNFKBIA involved in
cell-activating factor signalling pathway.
Twelve genes (CD9, ANXA5, COMT,DDIT3, ADAM10,

BAD, SOD2, ADRB2, CLN8, LTA, TGFBR1 and PTEN)
form a “calcium ion transport” class.
The “metabolism” class includes four genes (EDN1,

COFILIN, PLA2G4A, and CORO1A), and the “hormonal
responses” class includes one gene (HMOX1).
The 284 remaining genes from the first list (List1) were

clustered into 4 clusters using HAC (Fig. 3, Additional
file 3).
The second list of genes (List2), consists of 154 unique

genes (209 transcripts, Additional file 4) for which the
contribution of the L/G ratio to the expression varied
over time steps. Among these genes, 132 genes were fur-
ther assembled into six functional networks that notably
revealed hematological system development and function,
tissue morphology, cancer, organismal injury and abnor-
malities, reproductive system disease, cellular growth and
proliferation. The average evolution of all these genes
shows the same expression profile. This group of genes is
characterized by genes decreasing with a peak of expres-
sion at t = +1 and stable between t = +4 and t = +24.
According to this analysis, it is unlikely that genes for
which the contribution of the L/G ratio to the expression
varied over time steps are directly involved in the immune
response to LPS injection.
The third list of genes (List3) consists of 116 unique

genes (185 transcripts, Additional file 5) for which the
expression was found to be correlated to the level of cor-
tisol at t = +4. This time point was chosen as the
peak of plasma cortisol concentration after LPS (Fig. 1).
The most significant functions are: cellular function and
maintenance – function of blood cells (30 genes); cellular
movement, immune cell trafficking – leucocyte migration
(35 genes); lymphoid tissue structure and development,
tissue morphology – quantity of lymphatic system cells
(34 genes); cellular function and maintenance – function

Fig. 3 Black: Average evolution the genes in each of the clusters
identified by the HAC on the 284 DEG identified in list (List1).
Evolution of each gene is translated so that it is equal to 0 at t = 0;
Red: Average evolution over all genes in the cluster (cluster 1: 8 genes,
cluster 2: 12 genes, cluster 3: 159 genes, cluster 4: 77 genes). 28 genes
were unclassified

of leucocytes (27 genes); hematological system develop-
ment and function, tissuemorphology – quantity of leuco-
cytes (36 genes); cellularmovement, hematological system
development and function, immune cell trafficking – cell
movement of leucocytes (32 genes); immunological dis-
ease – systemic autoimmune syndrome (39,374 genes)
(Additional file 6).

Validation of differential expression by quantitative
real-time PCR
Twenty-two DEG were selected for further examination
by quantitative real-time PCR using the Fluidigm tech-
nique (Table 2). These genes were selected from the three
studied lists ((List1)), (List 2), and (List 3)). Pearson corre-
lations between the differences in expression measured by
quantitative real-time PCR and microarray were greater
than 0.70 for 7 genes (CHI3L1, MYLIP, LCK, SOD2,
VAT1, COMT, and FAS). Lower correlations (between 0.5
and 0.6) were obtained for GALK2, VNN2, JAK2, KAT5,
ADAM10, RARA, and ANXA7.

Discussion
Plasma cortisol, metabolites, and blood cell counts
In pigs like in other species, LPS is responsible
for the fever and inflammatory reaction induced by
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Table 2 Correlations between quantitative real-time PCR with microarray expression for selected genes (n = 22)

Gene name Gene description List that provided the gene Pearson correlation p-value (Fluidigm) Gene expression profile

CHI3L1 chitinase 3 like 1 (List 1) 0.72 1.68e-07 down at t = +1
up at t = +24

CHIT1 chitinase 1 (List 1) 0.68 0.00214 down at t = +1
up at t = +24

CLEC2D C-type lectin domain family 2 member D (List 2), (List 3) 0.60 0.0019 down at t = +1
up at t = +24

GALK2 galactokinase 2 (List 1) 0.50 9.52e-11 down at t = +1
up at t = +24

HSD17B11 hydroxysteroid (17-beta) (List 1) 0.67 3.02e-11 down at t = +1
dehydrogenase 11 up at t = +24

KAT5 lysine acetyltransferase 5 (List 1) 0.53 5.37e-09 down at t = +1
up at t = +24

LCK LCK proto-oncogene, Src family (List 1) 0.74 3.77e-10 down at t = +1
tyrosine kinase up at t = +24

MSN moesin (List 1) 0.61 5.68e-05 down at t = +1
up at t = +24

MYLIP myosin regulatory light chain (List 1) 0.72 2.26e-10 down at t = +1
interacting protein up at t = +24

RAB31 RAB31, member RAS oncogene family (List 1) 0.65 0.00152 down at t = +1
up at t = +24

RARA retinoic acid receptor alpha (List 1) 0.58 6.59e-05 down at t = +1
up at t = +24

SSH1 slingshot protein phosphatase 1 (List 1), (List 2) 0.67 1.28e-11 down at t = +1
(List 3) up at t = +24

VAT1 vesicle amine transport 1 (List 1) 0.75 1.26e-12 down at t = +1
up at t = +24

VNN2 vanin 2 (List 1) 0.52 0.74 down at t = +1

up at t = +24

CERS4 ceramide synthase 4 (List 2), (List 3) 0.60 1.16e-06 down at t = +1
up at t = +4

FAS Fas cell surface death receptor (List 1), (List 2) 0.83 <2e-16 down at t = +1
(List 3) up at t = +4

JAK2 Janus kinase 2 (List 2), (List 3) 0.52 2.54e-10 down at t = +1
up at t = +4

ADAM10 ADAMmetallopeptidase domain 10 (List 1) 0.56 8.15e-05 down at t = +4
up at t = +24

ANXA7 annexin A7 (List 1) 0.59 0.000417 down at t = +4
up at t = +24

COMT catechol-O-methyltransferase (List 1) 0.75 1.64e-14 down at t = +4
up at t = +24

STMN1 stathmin 1 (List 1) 0.69 3.24e-09 down at t = +4
up at t = +24

SOD2 superoxide dismutase 2, (List 1) 0.74 <2e-16 up at t = +4
mitochondrial down at t = +24

p-value (Fluidigm) gives the time effect of quantitative real-time PCR data for every gene

gram-negative bacterial infection, as shown by the
increase in the circulating levels of pro-inflammatory
cytokines and acute phase proteins, as well as the changes

in white blood cell counts [27, 29–31], which explained
the characteristic changes of white blood cell count to LPS
observed in our study.
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LPS also induces profound endocrine and metabolic
changes and our results are consistent with previously
published data in pigs [27, 29, 31]. A large increase in
circulating levels of cortisol (and catecholamines, not
measured here) has been described and these hormonal
changes can be involved in the release of the mediators
of inflammation [27, 31]. It was shown previously in mice
that this hypoglycaemia cannot be explained by changes in
insulin concentrations that are also reduced by LPS [32],
but it could result from the increased glycolysis in mus-
cles and immune cells, as well as from a reduced hepatic
glucose production [33]. The increase of circulating con-
centration of free acids can result from the lipolytic action
of catecholamines and cortisol that are massively released
by LPS [11, 34] and from LPS-induced changes in hepatic
and fat tissue lipid metabolism [35, 36]. A sharp increase
in bilirubin concentrations was also measured at t = +4
(17.72 vs 2.14 μmol/l), reflecting the hepatic toxicity of
LPS [37, 38].

Clustering of differentially expressed genes (List1)
The 284 remaining genes from the first list (List1) were
clustered into 4 clusters using HAC. This clustering
exhibited patterns related to different kinetics of their
response.
The first cluster includes 8 genes up-regulated at t =

+1 and related to immune cell tracking (ALOX12, JUNB,
TNFAIP3, CCL20, CXCL5,NFKBIA, LTA, EDN1). Inflam-
mation is a powerful protective mechanism which is
coordinated and controlled by cytokines and chemokines
and, as expected, we detected an increase in the expres-
sion level of members of the CXCL family. JUNB gene (a
member of Jun family) also participates in the immune
response; it is activated by the TLR signalling path-
way [39] and can induce expression of interleukins [40–
43]. Hormone activation of the glucocorticoid receptor
in leukocytes results in a profound suppression of pro-
inflammatory gene networks such as the NF-κB medi-
ated transcription of pro-inflammatory cytokine genes
and CXCL2 together with LTA were described by [44] as
glucocorticoid-regulated genes. These findings show that
wide variation in glucocorticoid sensitivity exists between
individuals which may influence susceptibility to inflam-
matory diseases [11].
The second cluster includes 12 genes up-regulated at

t = +4 and related to connective tissue disorders and
inflammatory diseases (GYG1, PDXK, RETN, C3, IL27,
TLR4, IL1RN, ICAM1, CXCL13, C3AR1, FAS, SOD2, and
TLR4). Toll-like receptor 4 (TLR4) is essential for ini-
tiating the innate response to lipopolysaccharide from
Gram-negative bacteria by acting as a signal-transducing
receptor. As the pig industry faces a unique array of
related pathogens, it is anticipated that the genotype of
swine TLR4 could be of crucial importance in future

strategies aimed at improving genetic resistance to infec-
tious diseases [45].
The third cluster includes the genes down-regulated

at t = +4. This cluster groups 159 DEG related to the
inflammatory response. It is associated with functions
linked to immunological disease, cancer, cell death and
survival, immune cell tracking, and belongs to a series of
twelve canonical pathways, including leukocyte extrava-
sation signalling, NF-κB activation, and glucocorticoid
receptor signalling.
The fourth cluster includes the genes down-regulated

at t = +1. These genes are related to apoptosis, NF-κB,
and death receptor signalling canonical pathways.

Comparison of all lists of genes
Figure 4 shows the overlap of the three lists of genes
((List1), (List2), and (List3)). Twenty two genes are com-
mon between the three analyses: ABHD2, C3, C3AR1,
C5AR1, CAPN3, CCDC47, CD163, CXCL13, DBN1,
DGAT2, FAS, GYG1, HMOX1, NFAM1, PDXK, SELL,
SERPING1, SOD2, TLR4, TNFRSF1A, TNFSF13B and
TXNIP. Identification of genes common to all three anal-
yses, which are known in literature to have an important
role in chemotaxis, apoptosis, calcium ion transport and
metabolism, confirms their roles in immunity and inflam-
mation in pigs. These genes could further serve in a
panel of tissue prognosis indicators of porcine immune
response. IPA analysis showed that these genes form two

Fig. 4 Venn diagram showing DEG common to all lists of genes
((List1), (List12 and (List3); 22 DEG)
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Table 3 Gene networks (NW) with commons DEG between the three lists of genes (in bold)

NW Genes in network Genes in present study Top diseases and functions

1 ABHD2∗ , ALB, C3AR1, C5AR1, Calmodulin,
CAPN3, CD163, DBN1, ESR1*, FAS, Gpcr,
GPR158, IgG, ITPKA, NFAM1, PDXK , SELL,
SERPING1, SMARCA4, SYK, TLR4, TNFR/Fas,
TNFRSF1A, TREM1, YWHAZ

13 Infectious Diseases, Cellular Movement,
Hematological System Development
and Function, Cell-To-Cell Signaling and
Interaction

2 2-methoxyestradiol, ABHD2∗ , C3, Cbp/p300,
CCDC47, CDKN1A, CXCL13, DGAT2, EGFR,
EP300, ESR1*, GYG1, HMOX1, NR3C1, PPARG,
SOD2, STAT1, TNFSF13B, TXNIP

10 Cell Death and Survival, Cellular Develop-
ment, Cellular Growth and Proliferation

ABHD2∗ and ESR1∗ are common to both networks

functional networks, NW1 and NW2 (Table 3). The first
functional network (NW1, Fig. 5) is related to infectious
diseases, cellular movement, hematological system devel-
opment and function, cell-to-cell signalling and inter-
action. These genes form a node connected to ESR1.
This gene encodes the estrogen receptor 1, a ligand-
activated transcription factor. Estrogen receptors are also
involved in pathological processes including breast can-
cer, endometrial cancer, and osteoporosis [46]. Among
the genes that form these networks, two are particularly
interesting, TLR4 and CD163. Toll-like receptor 4 (TLR4)
signalling pathway is the essential member in TLRs family,
which plays an important role in a variety of inflamma-
tory reaction such as in diarrhoea and hydropsy of weaned
piglets infected by pathogens [47]. The TLR4 gene was
described as one of the important immunological factors
influencing for example the development of mycoplasma

pneumonia of swine [48]. TLR4 dysregulation promoted
aberrant cytokine production in bacterial sepsis [49].
The expression of porcine CD163 (a scavenger recep-

tor belonging to a cysteine-rich superfamily) on mono-
cytes/macrophages correlates with permissiveness to
African swine fever infection [50]. CD163 is considered
as the most important receptor for porcine reproductive
and respiratory syndrome attachment and internalization
[51]. Cell entry of simian hemorrhagic fever virus is also
dependent on CD163 [52].
The second network (NW2) is related to cell death and

survival, cellular development, cellular growth and prolif-
eration. The NR3C1 (nuclear receptor subfamily 3, group
C, member 1) gene encodes the glucocorticoid receptor,
which can function both as a transcription factor that
binds to glucocorticoid response elements in the promoters
of glucocorticoid responsive genes, and as a regulator of

Fig. 5 Functional networks formed by the 22 DEG common to (List1), (List2) and (List3). NW1: related to infectious diseases, cellular movement,
hematological system development and function, cell-to-cell signalling and interaction. NW2: related to cell death and survival, cellular
development, cellular growth and proliferation
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other transcription factors. Signal transducer and acti-
vated transcription 1 (STAT1) has been identified as a
point of convergence for the cross talk between the pro-
inflammatory cytokine interferon γ (IFNγ ) and the Toll-
like receptor-4 (TLR4) ligand LPS in immune cells [53].
LPS activates STAT1 via the NF-κB pathway [54].
Several transcriptomic studies of immune and inflam-

matory responses have been published in pigs, however
little is known about longitudinal changes. The periph-
eral blood transcriptome reflects variations in immu-
nity traits and a few potential gene biomarkers were
found for immunocompetence (RALGDS gene was shown
for prediction of IL2; ALOX12 for phagocytosis; GNLY,
KLRG1 and CX3CR1 for CD4-/CD8+ cell count) [55].
Zhou et al. [56] investigated the transcriptional responses
of pig peripheral blood mononuclear cells following an
experimental challenge with the intracellular protozoan
Toxoplasma gondii. Zhao et al. [57] studied the response
to the foot-and-mouth disease infection. Peripheral blood
mononuclear cells transcriptome profiles were studied
by Islam et al. [58] to identify potential candidate genes
and functional networks controlling the innate and adap-
tive immune responses to the porcine reproductive and
respiratory syndrome vaccine. The innate immune tran-
scriptional network was found to be regulated by LCK,
STAT3, ATP5B, UBB and RSP17 genes. The adaptive
immune transcriptional response to the porcine repro-
ductive and respiratory syndrome vaccine in periph-
eral blood mononuclear cells is related to TGFb1, IL7R,
RAD21, SP1 andGZMB. Altogether these results show the
value of gene expression studies to explore inflammatory
and immune responses and the factors of their regulation.

Conclusion
Wehave presented here an integrative biological approach
combining different statistical models and biological mea-
sures and taking into consideration the longitudinal
aspect of the data. This analysis of biological data required
the development of a methodology adapted to both the
multi-dimensional and longitudinal data.
LPS stimulation was chosen because it is standard to

study general inflammation processes in many species.
Immunological stress is the status of animals challenged
by bacteria or viruses. It is associated with immunological,
neurological, and endocrinological responses [4]. A four
time point kinetic was studied. It has been reported that
time points earlier than 24 h are more relevant to decipher
the onset of the response to stimulus as shown in kinetics
studies in cow [59], pig [60], mouse [61] or human [62].
Moreover, kinetic studies have revealed that many genes
return to their basal expression level by 24-48 h of stimu-
lation, suggesting that homeostasis is restored at that time
[59, 60]. Our results provide many candidate genes to test
for kinetic studies and ongoing complementary studies

focused on this topic. It is worth mentioning that the dif-
ferent responses to LPS are not influenced by the adrenal
gland reactivity as measured by the cortisol response to
ACTH.
In conclusion, we have demonstrated that there are spe-

cific biomarkers indicative of an LPS-stimulated inflam-
matory response. Furthermore, these responses persist for
prolonged periods of time and at significant expression
levels, making them good candidate markers for evaluat-
ing the efficacy of anti-inflammatory drugs. The majority
of the genes identified have known roles in the inflamma-
tory process. Subsequently, these biomarkers may serve
collectively as an indication of inflammation in swine.
The knowledge gained from this series of experiments
may help in the development of a model for further
studies.
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