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Abstract. The environmental costs of intensive farming activities are
often under-estimated or not included into rural development plans, even
though they play an important role in addressing future society’s needs.
This paper focuses on the use of statistical learning methods to predict
N2O emissions and N leaching under several conservative scenarios, in
order to provide an alternative approach to deterministic models on a
macro-scale. To that aim, three learning methods, namely neural net-
works (multilayer perceptrons), SVM and random forests, are compared
and provide accurate solutions.

1 Introduction

1.1 Context and purpose

Agriculture is a multi-goal system since it has to meet the needs of current and
future generations while continuing to preserve natural resources. The last Food
Agricultural Organization summit in Rome warned that more than 1 billion
people are chronically undernourished worldwide [10] and that reversing this
worrisome hunger trend could require more-intensive farming practices. The en-
vironmental costs of these activities are often unmeasured [27] even though they
cause a degradation of other ecosystem services essential for human well-being.
In 2003, the Common Agricultural Policy (CAP) revision introduced new mea-
sures to improve the compliance with more sustainable environmental and agri-
cultural standards as prerequisite to receiving direct payments. To quantify the
effectiveness of these measures several indicators have been selected to describe
the nitrogen (N) and carbon (C) cycles across farmlands. In this paper, we focus
on N2O emissions and N leaching; the first indicator is a powerful greenhouse
gas and the second one is an important source of fresh water pollution.

The estimation of N dynamics demands detailed simulation based methods
and their integrated use to correctly represent complex and nonlinear interac-
tions into cropping systems. To calculate the N2O flux and N leaching from
European arable lands, a modeling framework has been developed by combining



the agro-economical model CAPRI [8] with the biogeochemical model DNDC-
EUROPE [15].

Despite the great power of modern computers, the use of deterministic models
at macro-scale is often prohibited, because of computational needs and parametriza-
tion constraints [23]. Metamodeling is known to be a soaring application in many
disciplines to approximate the expensive code of detailed models. [26] and [7]
resume the benefits of metamodeling as follows:� A better understanding of the relationship between input and output� Easer integration into other processes� Faster execution and responding scenario analysis for optimization and

exploration of studied system� Easier applicability across different scales and site-specific calibrations

In this paper we compare the performances of 3 different statistical learning
methods to approximate the long and complex CAPRI/DNDC-EUROPE com-
puter analysis codes; the metamodels have subsequently been integrated into the
Cross Compliance Assessment Tool (CCAT), a large simulation platform which
aims to provide an exhaustive assessment of the impact of CAP measures [11].

1.2 Description of the data

The Homogeneous Spatial Mapping Unit (HSMU) is the minimal geographical
unit used for our simulations [15]. The main environmental informations are
European soil [13] and daily meteorological data [20]; farm management and
land use information have been obtained from CAPRI at regional level and sub-
sequently dis-aggregated at HSMU resolution. Its processing is described in
details in [15]. The original DNDC-EUROPE input dataset is very large and
many parameters are required to feed the detailed model. To perform the sim-
ulations, we decided to screen out the less important variables from the whole
input dataset; at the end the list of predictors comprised of the following infor-
mation: N FR (N input through fertilization; kg/ha y), N MR (N input through
manure spreading; kg/ha y), Nfix (N input from biological fixation; kg/ha y),
Nres (N input from root residue; kg/ha y), BD (Bulk Density; g/cm3), SOC
(Soil organic carbon in topsoil; mass fraction), PH (Soil PH), Clay (Ratio of
soil clay content), Rain (Annual precipitation; mm/y), Tmean (Annual mean
temperature; °C), Nr (Concentration of N in rain; ppm).

Several scenarios related to agricultural choices are studied: the definition
of scenarios is an important policy decision tool to compare conservative vs.
conventional intensive farming activities to carry out an environmental cost-
benefit analysis; a good model should be able to approximate the outputs of
interest for various scenarios. A comparative study of several approaches is
then useful to provide guidelines on the choice of a learning method as well as to
evaluate the accuracy of each algorithm for a given task. We designed 5 scenarios
according to the CAP measures [11]:



� S1: Baseline scenario (conventional corn cropping system)� S2: similar to S1 without tillage� S3: similar to S1 with a limit in N MR at 170 kg/ha y� S4: rotation between corn (2y) and catch crop (3y)� S5: similar to S1 with an additional application of fertilizer in winter

The Europe of 25 Member States is covered by more than 200 000 HSMUs
but to reduce the running time we decided to select a representative sample
subset for corn crops by applying a minimum threshold criteria in land use. The
number of simulation units has been so decreased to around 20 000; only the S4
scenario have been based on a larger sample set (about 40 000 HSMU) because it
simulated the rotation of corn with alfalfa and we had to include all the HSMUs
which contain both crops. Finally, the final data set results in 5 scenarios, each
with two variables to predict (N2O flux and N leaching) and 11 variables to make
the prediction. The scenarios contain, respectively, 18 794 observations (scenario
1), 18 830 observations (scenario 2), 18 800 (scenario 3), 40 536 (scenario 4) and
18 658 (scenario 5). Each HSMU is described by the 11 predictors presented
below and by the 2 target variables (N2O discharge and N leaching) that have
been extracted from the geobiological simulator DNDC-EUROPE.

2 Description of the experiments

2.1 A short review about learning methods used

Three of the most popular learning methods developed during the past years
have been compared to address this question of which kind of approach should be
implemented by the Climate Change Unit to obtain fast and accurate estimations
of greenhouse gases discharge as well as N leaching. These 3 methods are briefly
described below:� Multilayer perceptrons (MLPs) come from the original model called per-

ceptron that was introduced on the end of the 50’s by Rosenblatt and
became very popular after the wide increase in the computational capaci-
ties of computers. MLPs have been continuously improved and studied and
the work of [24] and [3] provide a general presentation of these methods
and of their properties. To avoid overfitting, a weight decay is frequently
used (see [14]): the mean squared error optimized to learn the weights
of the perceptron is penalized by the norm of the weights to avoid large
and instable weights. In the experiments described below, a weight decay
has been used for a one-hidden-layer perceptron with a sigmoid activation
function on the hidden layer and a linear activation function on the output
layer.

Multilayer perceptrons are already well-known in the geostatistics commu-
nity: several publications have already emphasized the usefulness of that



tool in remote sensing [2], ecological modeling [16] and land use modeling
[17, 29], among others. Moreover, MLP are implemented in several GIS
software that model land use evolution as in, e.g., the widely used com-
mercial software Idrisi© (http://www.clarklabs.org/products/index.
cfm).� Support Vector Machines (SVMs) are unusual in geostatistics. SVMs were
introduced by [4] and were originally designed to address classification
problems. [28] presents an extension to the regression case by the way of an
ǫ-insensitive loss function. Since that, other variants of kernel methods to
regression problems have been developed such as the kernel ridge regression
[25]. A SVM with ǫ-insensitive loss function and a Gaussian kernel was
used for the modeling of N2O flux and N leaching.� Random forests are the most recent of the three studied methods since
they were first introduced by [5]. This paper combines the ideas of bagging
developed by [5] and that of feature selection by [1, 12] for improving the
regression tree method [6]. Basically, the method consists in computing
a large number of randomly under-efficient regression trees and then to
average them. Despite its recency, random forests have gaven rise to an
increasing interest in the past year in geostatistics. Among others, we refer
to the article of [21], in the field of remote sensing, and the paper of [22],
in the field of ecology.

2.2 Methodology

All experiments were performed using the free software R [19] to enable their
implementation and diffusion in the Climate Change Unit. Existing R packages
have been used: the package nnet for multi-layer perceptrons, the package e1071
for SVM (see [9]), the package randomForest for random forests.

The following methodology has been applied to compare the three methods:

1. For each scenario, the dataset was randomly separated into a training set
and a test set on the basis on 80% of the observations for the training set
and 20% for the test set;

2. The training step was then performed for each of the three methods from
the training set of each scenario and for both outputs to predict (N2O flux
and N leaching). During this step, several parameters had to be tuned:� MLPs required the tuning of the number of neurons on the hidden

layer and of the penalization parameter associated with the weight
decay. These tunings were made using a simple validation strategy
on the training set. This approach was preferred to cross-validation
to avoid a high computational cost that would have resulted from the
number of observations. Moreover, the validation set was built by
randomly selecting half of the whole training dataset and thus has a
size always larger than 7 000, which should lead to a good robustness.



� SVMs required the tuning of three parameters: the parameter of the
Gaussian kernel, the value of ǫ associated with the ǫ-insensitive loss
function and the regularization parameter. The tuning of ǫ was avoid-
ing by setting it equal to 1 which corresponds approximately to the
second decile of the target variable for every scenario and every out-
put: this choice fitted the standard proposed by [18] who suggest to
have a number of Support Vectors smaller than 50% of the train-
ing set. Two other parameters were tuned in the same way as the
parameters of MLP.� Several parameters could have been tuned for random forests such
as the number of trees in the final forest or the number of variables
randomly selected to build a given split. But it is known that this
method is less sensitive than the two others to parameter tuning so
the default values implemented in the randomForest package, based
on useful heuristics, were directly used. Moreover, the full learning
process always led to a stabilized out-of-bag error.

In addition, to avoid problems due to the convergence to a local minimum,
of the optimization algorithm involved in MLP, the whole learning process
(including tuning) was repeated 5 times for this method, with different
random initializations.

3. Finally, two quality measures were computed on the test set to com-
pare results in each scenario and for each output to predict: the usual
mean squared error and R2 (Pseudo-R2 was used: 1 −

SSmodel

SSdefault

= 1 −

∑
i∈test set

(yi−ŷi)
2

∑
i∈test set

(yi−ȳtrain)2
where yi are the true output values, ŷi are the pre-

dicted output values and ȳtrain is the default prediction based on the mean
of the outputs in the training set).

Additionally, to give an indication of which variables are important in the
prediction, an “importance” measure was calculated. For random forests,
the importance is quite common: for a given predictor, the values of out-
of-sample observations are randomly permuted; the mean squared error is
then calculated based on all out-of-sample sets for all trees in the forest.
The increase in the mean squared error compared to the out-of-sample
mean squared error calculated with the true values of the predictor is
called the importance of the predictor.

Unfortunately, MLPs and SVMs are not based on bootstrapping so out-
of-sample observations do not exist for these methods. Hence, importance
cannot be defined or directly compared to the one given for random forests.
Nervelessness, a close definition can be introduced by using the validation
set selected for the tuning process and by comparing the mean squared
error of permuted inputs to the true squared error on this validation set.



2.3 Preprocessing of variables

The input variables were rescaled to have 0 mean and a standard deviation
equal to 1, in the training and test sets separately. Moreover, correlations be-
tween the predictors were studied. Additionally, a previous study of the input
variables shows a great asymmetry in the distribution of N2O flux and N leach-
ing, as shown in Figure 1. Using the same experimental protocol (described in
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Fig. 1: N2O flux in scenario 1

section 2.2), two kinds of variables were learned:� the original variables corresponding to the original values of N2O flux and
N leaching;� preprocessed variables corresponding to the log-values of N2O flux and N
leaching.

The comparison between the two approaches shows that using the original vari-
ables is the best choice. The following results then restrict to that case, avoiding
the preprocessed case.

3 Results and comments

3.1 Numerical results

The numerical results (mean squared errors and corresponding R2 on test sets)
are summarized in Table 1. Several comments follow from these results:� The best predictions are accurate for all scenarios and for both variables

to predict with R2 always greater than 0.8 (and often greater than 0.9). In



MLP random forest SVM
N2O Scenario 1 3.278 (90.7%) 2.705 (92.3%) 3.141 (91.0%)

Scenario 2 6.741 (80.3%) 5.139 (85.0%) 6.081 (82.3%)
Scenario 3 6.450 (85.1%) 5.194 (88.0%) 5.757 (86.7%)
Scenario 4 3.597 (88.6%) 3.011 (90.5%) 4.350 (86.3%)
Scenario 5 4.559 (80.6%) 3.540 (84.9%) 4.064 (82.7%)

N leaching Scenario 1 555.7 (89.7%) 351.2 (93.5%) 179.9 (96.6%)
Scenario 2 413.5 (91.4%) 331.8 (93.1%) 147.1 (97.0%)
Scenario 3 447.4 (90.6%) 453.8 (90.4%) 187.6 (96.0%)
Scenario 4 474.2 (80.5%) 317.8 (86.9%) 229.1 (90.6%)
Scenario 5 759.1 (86.5%) 401.9 (92.9%) 308.0 (94.5%)

Table 1: Comparison of the prediction performances of the 3 methods on the
test sets: mean squared errors and corresponding R2 (in parentheses). For a
given scenario and a given variable to predict, the best method is in bold.

term of R2 values, the N leaching is often better predicted than the N2O
flux, except for scenario 4.� MLPs has a bad prediction accuracy and is almost always the worse
method. On the contrary, SVMs and random forests both yield interest-
ing results: random forests are always the best method for the prediction
of N2O and SVMs are always the best method for the prediction of N
leaching. In addition, for all scenarios and for the two variables to pre-
dict, the best method always obtains significantly better results than the
second best one, according to a Wilcoxon paired test with level 1% on
the residues; the only exception is the prediction of N2O flux in scenario
4 where random forests does not obtain significantly better results than
MLP.

3.2 Most important variables

Figure 2 gives the importance of the predictors by decreasing order for the predic-
tion of N2O flux by random forest. Only a few variables appear to be important,
depending on the scenario: the variables SOC and PH are the most important
but, into a much lesser extent, Nr, N FR and N MR are also important. The
emission of N2O seems to depend on soil attributes, soil organic matter and PH;
the other important factors are the main N inputs represented by the fertiliza-
tion and manure amendment, and the N concentration in rain which indirectly
indicates the amount of N input through depositions.

In the same way, for the prediction of N leaching, a larger number of variables
appears to be important for the accuracy of the prediction. Except for scenario
4, the important variables are PH, Nres, SOC, N MR, N FR, day and rain.
Additionally, in scenario 4, Nfix is also important. The N leaching seems to be
influenced mainly by soil attributes, SOC, PH and texture (clay), and by the



Fig. 2: Importance of the variables in function of their rank (by decreasing order
of the importance) for the prediction of N2O flux by random forest in scenario
1 (top left), 2 (top right), 3 (middle left), 4 (middle right) and 5 (bottom)



N inputs through fertilization, manure application and root residue; the annual
rainfall events obviously play an active role in leaching.

4 Conclusion

Three methods have been compared to predict N2O flux and N leaching in
various scenarios. SVMs and random forests achieve the best performances, the
first one to predict N leaching and the second one to predict N2O flux. They
are an interesting alternative solution at a macro scale as they can provide fast
and accurate estimates for a large number of new inputs. In particular, random
forests have a very low computational cost to provide new predictions whereas
SVMs can be more demanding (they require the calculation of a kernel matrix
with size Nnew × N where N is the number of observations in the training set
and Nnew is the number of new observations to predict).

Moreover, the models also give strong indications about important variables
needed to obtain accurate results: the first simulations show that the variables
emphasized by the “importance” index can have bio-geochemical interpretations.
A deeper analysis should be conducted to confirm this conclusion.
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