
1 An introduction to network inference and mining

An introduction to network inference and
mining

Résumé
This vignette needs no specific prerequisites : it deals with elementary

concepts related to graphs or networks. It has been created more specifically
for application in biology but can be used by anybody interested by this topic,
though the second part, about network inference, is more specific to biostatis-
tics. Also, this vignette is written in English but the most important words are
translated in French and formatted this way : en français !

Table des matières

1 Basic definitions and concepts for graphs / networks 1
1.1 Examples . 2

1.2 Overview of standard issues for network analysis 3

1.3 More complex relational models 3

2 Network inference 4
2.1 Basics about network inference 4

2.2 Relevance network . 4

2.3 Gaussian Graphical Model 5

2.3.1 Estimating partial correlations in GGM 6

2.3.2 Estimating the conditional dependency graph with
Graphical LASSO 6

2.4 Other references . 7

3 Network mining 7
3.1 Basic definitions . 7

3.2 Network visualization . 8

3.3 Global characteristics . 8

3.4 Individual characteristics . 9

3.5 Clustering Classification . 12

3.6 A few more references on clustering 12

4 Applications 13
4.1 Gene network inference . 13

4.1.1 Presentation of the dataset 13

4.1.2 Network inference 16

4.1.3 Building the network 17

4.1.4 Short mining of the network 18

4.2 Facebook network mining 19

4.2.1 Visualization . 21

4.2.2 Individual characteristics 23

4.2.3 Clustering . 24

4.2.4 Export graph . 25

1 Basic definitions and concepts for graphs
/ networks

A network (un réseau), also frequently called a graph (un graphe), is a ma-
thematical object used to model relations between entities. In its simplest form,
it is composed of two sets (V,E) :

• the set V = {v1, . . . , vp} is a set of p vertices (vertexes in American
English, sommets in French), also called nodes (nœuds) that represent
the entities ;

• the set E is a subset of the set of vertex pairs, E ⊂
{(vi, vj), i, j = 1, . . . , p, i 6= j} : the vertex pairs in E are called edges
(arêtes) of the graph and model a given type of relations between two
entities.

http://wikistat.fr

2 An introduction to network inference and mining

A network is often displayed as in Figure 1 : the vertices are represented with
circles and the edges with straight lines connecting two vertices.

FIGURE 1 – Simple example of a network with 5 vertices (purple circles) and
8 edges (lines connected two vertices).

1.1 Examples

Hereafter, several examples of networks are given, that will be used for illus-
tration purpose in the remaining of this vignette :

my own facebook network 1 (on August, 23rd, 2013) : the nodes of the
network are my facebook “friends” (mostly my former students ; only
initials are given for confidentiality reasons) and an edge between two
nodes represents a facebook relationship between the two corresponding
persons. The data as well as the scripts used to study this network are
provided and commented in Section 4.2. This network is displayed in
Figure 2.

a medieval network built from a large corpus of notarial acts (mostly
“baux à fief” and more precisely, land charters) established in a for-
mer seigneurie called “Castelnau-Montratier”, located in the Lot (South

1. http://www.facebook.com

FIGURE 2 – My facebook network on August, 23rd, 2013. See Section 4.2 for
further details.

West of France), not far from the nowadays village with the same name.
All the documents were established between 1250 and 1500 and were
used to model a large network having for vertices, the individuals and
the transactions found in the corpus (3 918 nodes). An edge between
an individual and a transaction indicates that the individual has been di-
rectly involved in the transaction (6 455 edges). This network contains
no edge between two individuals or between two transactions. This
network will be used to illustrate some notions on a large network in
the following sections. It is displayed in Figure 3 and more details on
this corpus and the data used to build this network can be found in
[Boulet et al., 2008, Rossi and Villa-Vialaneix, 2011] ;

a network inferred from gene expression data The nutrimouse data-
set, provided in the R package mixOmics contains the expression of 120
genes potentially involved in nutritional problems and the concentrations
of 21 hepatic fatty acids for forty mice. The data set comes from a nutri-
genomic study in the mouse [Martin et al., 2007] in which the effects of
two genotypes and five diets with contrasted fatty acid compositions on

http://wikistat.fr
http://www.facebook.com

3 An introduction to network inference and mining

FIGURE 3 – A network built from a large corpus of notarial acts : full repre-
sentation (left) and zoom on few number of nodes (right) where transactions
are represented by squares and individuals by circles.

liver lipids and hepatic gene expression in mice were considered. Net-
work inference and mining is performed in Section 4.1

1.2 Overview of standard issues for network analysis

This vignette will address two main issues posed by network analysis :
• the first one will be discussed in Section 2 and is called network infe-

rence (inférence de réseau) : giving data (i.e., variables observed for se-
veral subjects or objects), how to build a network whose edges represent
the “direct links” between the variables ? A famous example of this kind
of problem is network inference designed to recover the regulation net-
work from gene expression data : in this problem, gene expression are
measured for several subjects (e.g., by microarray or by RNAseq tech-
niques). The vertices in the inferred network are the genes and the edges
represent a strong “direct link” between the two gene expressions ;

• the second issue comes when the network is already built or directly
given : the practitioner then wants to understand the network’s main
characteristics and extract its main nodes, groups, etc. This ensemble

of methods, studied in Section 3, can be called under the generic name
of network mining (fouille de réseau) and comprises (among other pro-
blems) :
— network visualization : when representing a network, no a priori po-

sition is associated to its vertices and the network can thus be dis-
played in many different ways, as illustrated in Figure 4 where my
facebook network is displayed in two different ways : with a ran-
dom layout and with a layout produced by an algorithm designed for
positioning connected nodes close to each other ;

FIGURE 4 – My facebook network displayed with a random layout (left)
and with a layout produced by a force-directed placement algorithm
[Fruchterman and Reingold, 1991] (right).

— vertex clustering : a intuitive way to understand a network struc-
ture is to focus not on individual connections between nodes but
on connections between densely connected groups of nodes. These
groups are often called clusters or communities (communautés) or
modules (modules) and many work in the literature have focused on
the problem of extracting these clusters.

1.3 More complex relational models

This lesson’s scope is restricted to simple networks, i.e., undirected net-
works with no loop (i.e., no edge between a given node and itself) and simple
edges. But graphs (and relational models) can deal with many other types of
real-life situations :

directed graphs (graphe orienté) in which the edges have a direction, i.e.,

http://wikistat.fr

4 An introduction to network inference and mining

the edge from the vertex vi to the vertex vj is not the same than the edge
from the vertex vj to the vertex vi. In this case, the edges are often called
arcs (arcs) ;

weighted graphs (graphe pondéré) in which a (often positive) weight is
associated to each edge ;

graphs with multiple edges where a pair of vertices can be linked by seve-
ral edges, that can eventually have different labels or weights to model
different types of relationships ;

labeled graphs (graphe étiqueté) where one or several labels are associated
to each node, labels can be factors (e.g., gender) or numeric values (e.g.,
age).

2 Network inference
The purpose of this section is to explain how to estimate a regulatory net-

work from gene expression data. This issue is called network inference. We
will restrict ourselves to the very simple case where a large set of genes have
been measured on a few number of individuals. The data set is represented by
the matrix X :

individuals
n ' 30/50

X =



. . Xj
i . . .

.


︸ ︷︷ ︸

variables (genes expression), p'103/4

Even restricting to a small subset of genes, having n < p is the standard situa-
tion.

From these data, we want to build a network where :
• the nodes represent the p genes ;
• the edges represent a “direct” and “significant” co-expression between

two genes. This kind of relations aims at tracking transcription relations.
The main advantage of using networks over raw data is that such a model

focuses on “significant” links and is thus more robust. Also, inference can be
combined/compared with/to bibliographic networks to incorporate prior know-
ledge into the model but, unlike bibliographic networks, networks inferred

from one of the model presented below can handle even unknown (i.e., not
annotated) genes into the analysis.

2.1 Basics about network inference

Even if alternative approaches exist, a common way to infer a network from
gene expression data is to use the steps described in Figure 5 :

1. at first, the user calculates pairwise similarities (e.g., correlations in the
simplest case) between pairs of genes ;

2. second, the smallest (or less significant) similarities are thresholded
(using a simple threshold chosen by a given heuristic or a test or other
more sophisticated methods) ;

3. last, the network is built from the remaining similarities.

pairwise similarities thresholding network
between expressions

FIGURE 5 – Main steps in network inference

This approach leads to produce undirected networks. Additionnaly, the
strength of the relation (i.e., the intensity of the similarity) can be obtained
(weighted networks).

2.2 Relevance network

A simple, naive approach to infer a network from gene expression data
is to calculate pairwise correlations between genes and then to simply thre-
shold the smallest ones, eventually, using a test of significance. This ap-
proach is known under the term relevance network [Butte and Kohane, 1999,

http://wikistat.fr

5 An introduction to network inference and mining

Butte and Kohane, 2000]. They can be built with e.g., the R packages
WGCNA 2 [Langfelder and Horvath, 2008] or huge. However, if easy to inter-
pret, this approach may lead to strongly misunderstand the regulation relation-
ships between genes. Let’s describe the simple following situations displayed
in Figure 6. In this model, a single gene, denoted by x, strongly regulates the

FIGURE 6 – Small model showing the limit of the correlation coefficient to
track regulation links : when two genes y and z are regulated by a common
gene x, the correlation coefficient between the expression of y and the expres-
sion of z is strong as a consequence.

expression between two other genes, y and z. The correlation between the ex-
pressions of x and y and the correlation between the expressions of x and z are
strong but, as a consequence, the correlation between y and z is also strong :
using the simple mathematical model

X ∼ U [0, 1], Y ∼ 2X + 1 +N (0, 0.1) and Z ∼ −X + 2 +N (0, 0.1)

a quick simulation with R gives the following results :

set.seed(2807)
x <- rnorm(100)
y <- 2*x+1+rnorm(100,0,0.1)
cor(x,y)
[1] 0.9988261

z <- -x+2+rnorm(100,0,0.1)

2. http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
Rpackages/WGCNA/

cor(x,z)
[1] -0.9950618

cor(y,z)
[1] -0.9948234

Hence, even though there is not direct (regulation) link between z and y, these
two variables are highly correlated (the correlation coefficient is larger than
0.99) as a result of their common regulation by x. This result is unwanted
and using a partial coefficient can deal with such strong indirect correlation
coefficients.

2.3 Gaussian Graphical Model

In Gaussian Graphical Models, the conditional dependency graph is estima-
ted. This graph is defined as follows :

j ←→ j′(genes j and j′ are linked)⇔ Cor
(
Xj , Xj′ |(Xk)k 6=j,j′

)
6= 0

The last quantity is called partial correlation and it is equal to the correlation
between the residuals of the following linear models :

Xj =
∑
k 6=j,j′

βjkX
k + εj ,

and
Xj′ =

∑
k 6=j,j′

βj
′

k X
k + εj′ .

In the above example computed with R, the partial correlations are equal to :

http://wikistat.fr
 http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/
 http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/

6 An introduction to network inference and mining

cor(lm(x~z)$residuals,lm(y~z)$residuals)
[1] 0.7801174

cor(lm(x~y)$residuals,lm(z~y)$residuals)
[1] 0.7639094

cor(lm(y~x)$residuals,lm(z~x)$residuals)
[1] -0.1933699

i.e., to a large value for (x, y) and (x, z) and to a low value for (y, z), which is
exactly what was expected.

2.3.1 Estimating partial correlations in GGM

To build a network using partial correlations, a standard framework is that
of Gaussian Graphical Model : the matrix of gene expression X is supposed to
be generated from a Gaussian p-dimensional Gaussian distribution N (0,Σ).
In this framework, S = Σ−1 is called the concentration matrix and is related
to partial correlation between Xj and Xj′ , πjj′ by the following relation :

πjj′ = − Sjj′√
SjjSj′j′

, (1)

which indicates that non zero partial correlations (i.e., edges in the conditional
dependency graph) are also non zero entries of the correlation matrix S. But a
major issue when using Σ−1 for estimating S is that the empirical estimator of
Σ, with entries

Σ̂jj′ :=
1

n

∑
i

(
Xj
i −X

j
)(

Xj′

i −X
j′
)

with X
j

=
1

n

∑
i

Xj
i ,

calculated from the observations X, is ill-conditioned because it is calculated
with only a few number n of observations. Hence, Σ̂−1 is a poor estimate of S
and must not be used.

[Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b] proposes to

use shrinkage, i.e., to estimate S with Ŝ =
(

Σ̂ + λI
)−1

(for a given small

λ ∈ R+) and, optionally, to combine this approach with bootstrap. This me-
thod produces a matrix S with only non zero entries and the problem to decide
which of these entries are “significantly” non null is still to be faced.

It can be solved twofold :

• by choosing a given thresholding value or a given number of edges and
discarding the smallest partial correlations according to this choice. This
approach is not supported by any theoretical framework or any probabi-
listic model ;

• using a test statistics presented in [Schäfer and Strimmer, 2005a] which
is based on a Bayesian model : the partial correlations are supposed to
fit a mixture model :

η0f0 + (1− η0)fA

where η0 is the prior for the null hypothesis (i.e., the frequency of null
partial correlations), which is supposed to be large. η0 is then estimated
from an EM algorithm (see the original article for further details). This
method is implemented in the R package GeneNet.

2.3.2 Estimating the conditional dependency graph with Graphical
LASSO

The previous method is a two-step method which first estimates the partial
correlations and then selects the most significant ones. An alternative method
is to simultaneously estimate and select the partial correlations using a sparse
penalty. It is known under the name Graphical LASSO (or GLasso).

Actually, under a Gaussian framework, partial correlation is also related to
the estimation of the following linear models :

Xj =
∑
k 6=j

βjkX
k + εj (2)

by the relation

βjk = −Sjk
Sjj

which, combined with Equation (1) shows again that non zero entries of the
linear model coefficients correspond exactly to non zero partial correlations.

Hence, several authors [Meinshausen and Bühlmann, 2006,
Friedman et al., 2008] propose to integrate a sparse penalty in the esti-
mation of (2) by ordinary least squares (OLS) :

∀ j = 1, . . . , p, arg min
βj

 n∑
i=1

Xj
i −

∑
k 6=j

βjkX
k
i

2

+λ‖βj‖L1

 (3)

http://wikistat.fr

7 An introduction to network inference and mining

where ‖βj‖L1 =
∑
k 6=j β

j
k is the L1-norm of βj ∈ Rp−1 which is added to

the OLS minimization problem (in black in Equation (3)) in order to force only
a restricted number of non zero entries in βj . λ is a regularization parameter
that controls the sparseness of βj (the larger λ, the fewer the number of non
zero entries in βj). It is generally varied during the learning process and the
most adequate value (based on some theoretical results or on a target number
of edges) is selected. This method is implemented in the R packages glasso or
huge.

Finally, several approaches have been proposed to deal with the choice of a
proper λ : [Liu et al., 2010] proposes the StARS approach which is based on
a stability criterion while [Lysen, 2009] and [Foygel and Drton, 2010] propose
approaches based on a modification of the BIC criterion. All these methods are
implemented in the R package huge.

2.4 Other references

For the sake of simplicity, this vignette only deals with undirected network
inference and the GGM method. But a number of other approaches are used to
infer networks :

• Bayesian networks will be able to deal with directed graphs and more
precisely, with Directed Acyclic Graphs (DAG, i.e., graphs in which,
following a path along the directed edges, you can not come back
to the starting node). These methods will not be presented in this
vignette and for further information about them, you can refer to
[Pearl, 1998, Pearl and Russel, 2002, Scutari, 2010] (also, see the R pa-
ckage bnlearn) ;

• when using longitudinal expression data, one can infer a di-
rected network with GGM [Opgen-Rhein and Strimmer, 2006,
Charbonnier et al., 2010]. The first approach is implemented in
the R package GeneNet ;

• other methods have been used to infer networks such as, mu-
tual information ([Meyer et al., 2008] and the R packageminet), ran-
dom forest [Huynh-Thu et al., 2010], sparse CCA or sparse PLS
[Gonzàles et al., 2012] (as in the R package mixOmics)...

• network inference can also deals with network with prior struc-
tures, such as e.g., latent clusters [Chiquet et al., 2009] or joint esti-
mations [Chiquet et al., 2011, Danaher et al., 2014, Mohan et al., 2012,

Villa-Vialaneix et al., 2014]...
These references are far from being exhaustive.

3 Network mining
In this section, a graph G = (V,E) is supposed to be given, where V =

{x1, . . . , xp} is the set of vertices and E is the set of edges. Mining a network
is the process in which the user extract information about the most important
nodes or about groups of nodes that are densely connected.

3.1 Basic definitions

DÉFINITION 1. — [connectivity] A graph is said to be connected (connexe) if
any node in the graph can be reached from any other node by a path (chemin)
along the edges.

The connected components (composantes connexes) of a graph are all its
maximal connected subgraphs.

Exemple. —
• My facebook network (see Figure 7) contains 21 connected components

having, respectively, 122 vertices (containing my students, some profes-
sional contacts, my family and close friends), 5 vertices (who are a group
of researchers in computer science), 3 vertices (a group of friends from
my neighborhood) and then 2 or 1 vertices (isolated contacts).

• The medieval network’s largest connected component has 10 025 ver-
tices, which corresponds to 95% of its vertices ; in this case, the largest
connected component is often called a giant component / composante
géante).

DÉFINITION 2. — [bipartite graph] A graph is said to be bipartite (biparti)
if it is composed of two types of vertices with links between vertices with two
different types but no link between vertices with the same type.

Standardly, two projected graphs can be defined from a bipartite graph :
these graphs contain the vertices of a given type and two vertices are linked
if they share common links with vertices of the other type. Sometimes, the
number of shared links weight this kind of graph.

http://wikistat.fr

8 An introduction to network inference and mining

FIGURE 7 – My facebook network with all its 21 connected components

Exemple. — The medieval network is a bipartite graph because it only has
edges between a person (first type of vertex) and a transaction (second type
of vertex). Two projected graphs can be derived from this graph (or, more
interestingly from its largest connected component) :

• the graph of individuals : vertices in this graph are individuals that are
actively involved in a transaction (3 755 vertices) and edges are weighted
by the number of common transactions between two persons (which can
be viewed as a kind of social relationship) ;

• the graph of transactions : vertices are the 6 270 transactions and the
edges are model the fact that two transactions involve at least one com-
mon person.

3.2 Network visualization

Visualization tools are used to display the graph in a meaningful and aesthe-
tic way. Standard approaches in this area use force directed placement algo-
rithms (algorithmes de force, see [Fruchterman and Reingold, 1991], among
others). The principle of these algorithms is to :

• attach attractive forces to the edges of the graph (similar to springs) to

force connected nodes to be represented close to each others ;
• attach repulsive forces between all pair of vertices (similar to electric

forces) to force vertices to be displayed separately.
The algorithm perform iteratively from a (usually random) initial po-
sition of the vertices until stabilization. The R package igraph (see
[Csardi and Nepusz, 2006]) implements several layouts and even several FDP
based layouts for static representation of the network.

The free software Gephi can also be used to visualize a network inter-
actively (it supports zooming and panning, among other features). An short
video about how Gephi performs the iterative FDP algorithm, is available at
http://youtu.be/naTmvXbr5t4.

3.3 Global characteristics

This section gives the definition of two global numerical characteristics that
can help to understand the network structure and compare one network to ano-
ther.

DÉFINITION 3. — [density] The density (densité) of a network is the number
of edges divided by the number of pairs of vertices, |E|

p(p−1)/2 .

Because it is equal to the frequency of edges over the number of possible edges,
the density is a measure of how densely connected the network is.

Exemple. —
• My facebook network has 551 edges for 152 vertices, its density is thus

equal to 551
152×151/2 ' 4.8%. Its largest connected component has 535

edges for 122 vertices, its density is thus equal to 535
122×121/2 ' 7.2%,

which is much larger.
• The largest connected component of the medieval network network

has 10, 025 vertices and 17 612 edges. Its density is equal to 0.035%.
The projected networks based on relations between individuals contains
3, 755 vertices and 8, 315 edges : its density is thus much larger, equal
to 0.12%.

It is expected that the density tends to decrease with the number of edges
because, what is usually observed with real world networks, is that the number
of edges is approximately of the order the number of vertices.

http://wikistat.fr
http://gephi.org
http://youtu.be/naTmvXbr5t4

9 An introduction to network inference and mining

DÉFINITION 4. — [transitivity] The transitivity (transitivité) of a network is
the number of triangles in the network divided by the number of triplets that
are connected by at least two edges.

Speaking about a social network, the transitivity thus measures the probability
that two of my friends are also friends. A transitivity much larger than the den-
sity indicates that the vertices are not connected at random but on the contrary
that there is a strong local connectivity (a kind of “modular structure”), which
is often the case in real-world networks.

Exemple. —
• In the toy example given in Figure 8, the transitivity is equal to 1

3 .

FIGURE 8 – Transitivity calculated on a toy network (top left) : 1 triangle
(green vertices, top right) and two triplets with two edges (red vertices, bottom)

• My facebook network has a transitivity equal to 56.2% and its largest
connected component has a transitivity equal to 56.0%.

• The medieval network has a transitivity equal to 6.1%.

3.4 Individual characteristics

Once the network structure is analyzed globally, one may want to focus more
precisely on vertices individually so has to extract the most “important” ones.
Some simple numeric characteristics can be used to do so.

DÉFINITION 5. — [degree] The degree (degré) of a vertex vi is the number of

edges adjacent to this vertex : di = |{(vi, vj) ∈ E}.
Vertices that have a large degree are called hubs.

The degree is a measure of the vertex “popularity”.

Exemple. —
• In my facebook networks, the four vertices with the highest degrees are

four students, two of them have spent three years (instead of just two) to
obtain their degree and the two other are from my most recent class (the
one with which I still have the most connexions, see Figure 9).

FIGURE 9 – My facebook network with the hubs emphasized : SL and VG
are students who have been hold back during university and NE and MP are
students from my most recent class.

• In the medieval network, hubs have been studied and were found to be
lords, most of them from the most important family in the seigneurie

http://wikistat.fr

10 An introduction to network inference and mining

(see Figure 10 for a representation of this network in which the hubs are
highlighted).

FIGURE 10 – The medieval social network with names of hubs.

The degree distribution (i.e., the values (P (k))k that count the number of
nodes with a given degree k) of many real-world network was found to fit a
power law : P (k) ∼ k−γ for a given γ > 0. Thus, degree distributions are
often displayed with log-log scales (i.e., logP (k) versus log k) : in this case, a
good linear fit indicates a power law distribution.

Exemple. —
• The degree distribution of my facebook network’s largest connected

component is given in Figure 11. It doesn’t seem to fit a power law but
the size of this network is probably too small for this kind of distribution
to be observed. Nevertheless, one can see that most vertices have a very
low degree whereas a few vertices have a very high degree.

• When considering the medieval network, the degree distribution restric-

FIGURE 11 – The degree distribution of my facebook network.

ted to the transactions is the number of persons involved in a transaction.
It is given in Figure 12 with a log-log scale : it almost fit a power law.

1 2 5 10 20 50 100 200 500

1
5

50
50

0

Names

Transactions

FIGURE 12 – The degree distribution of the transaction network built from the
medieval corpus.

DÉFINITION 6. — [betweenness] The betweenness (centralité) of a vertex v is
the number of shortest paths between any pair of vertices that pass through
this vertex.

The betweenness is a centrality measure : vertices that have a large between-

http://wikistat.fr

11 An introduction to network inference and mining

ness are those that are the most likely to disconnect the network if removed.

Exemple. —
• In the toy example provided in Figure 13, the betweenness of the orange

node is equal to 4 as shown in Figure 14 in which all shortest paths that
pass through this vertex are emphasized in yellow.

FIGURE 13 – A toy example : the orange node’s betweenness is equal to 4 (see
Figure 14.

FIGURE 14 – A toy example : Shortest paths between pairs of nodes that pass
through the orange vertex are shown in yellow.

• In my facebook network, the betweenness distribution is displayed by its
density in Figure 15. As shown in this figure, it is heavily skewed. The
two vertices with the highest betweenness are displayed in Figure 16 :
they are two public persons who connect vertices very different frame-
works.

• In the network built from the medieval network by projecting indivi-
duals, most vertices with a high betweenness are also hubs (this result is
expected). However, some vertices have a high betweenness with a low
degree : they are mostly moral persons (such as “Chapter of Cahors” or
“Church of Flaugnac” or transcription errors that connect parts of the
networks having different dates).

FIGURE 15 – Betweenness distribution in my facebook network (density).

FIGURE 16 – My facebook network with highest betweenness emphasized :
BM and LF are two public persons having in political activities and thus
connecting very distinct groups of people.

http://wikistat.fr

12 An introduction to network inference and mining

3.5 Clustering Classification

Clustering vertices in a network refers to the task that consists in parti-
tioning the network into densely connected groups that share a few num-
ber of edges (comparatively) with the other groups. Clusters are often cal-
led communities (communautés) in social sciences and modules (modules) in
biology. A number of methods have been designed to address this issue and
this vignette is much too small to go beyond scratching the surface of this to-
pic. For further references on this topic, I suggest the reading of the reviews
[Fortunato and Barthélémy, 2007, Schaeffer, 2007].

One of the most popular approach consists in maximizing a quality criterion
called modularity [Newman and Girvan, 2004] :

DÉFINITION 7. — [modularity] Given a partition (C1, . . . , CK) of the nodes of
the graph, the modularity (modularity) of the partition is equal to

Q(C1, . . . , CK) =
1

2m

K∑
k=1

∑
vi, vj∈Ck

(
I(vi,vj)∈E − Pij

)
where Pij =

didj
2m and m = |E| is the number of edges i the network.

In this definition, Pij plays the role of a probability to have an edge between vi
and vj according to a “null model”. The “null model” refers to a model where
the edges depends only on the degrees of each vertex and not on the clusters
themselves : the larger the modularity is, the more the edges are concentrated
in the clusters (Cj)j . This model is close to maximizing the number of edges
in the clusters but is not exactly identical to it : edges that correspond to ver-
tices with a large degree have a lesser impact in the modularity value : this
aims at encompassing in the criterion the notion of preferential attachment
[Barabási and Albert, 1999] : preferential attachment is the fact that, in real
networks, people tend to connect preferably with people who already have a
large number of connections. Hence, these kind of edges seem to be less “signi-
ficant” (or, in other words, less important to define an homogeneous commu-
nity). In particular, modularity is known to better separate hubs (contrary to a
naive approach consisting in minimizing the number of edges between clusters,
that leads more frequently to have huge clusters and tiny ones with isolated
vertices). Also, the modularity is not monotonous in the number of clusters : it

can thus be useful to find an adequate number of clusters. However, it is also
known to fail detecting small communities [Fortunato and Barthélémy, 2007].

Maximizing the modularity is not an easy task because this problem is
known to be NP-complete (i.e., when the network size is multiplied by
2, the time needed to compute an exact solution is multiplied by more
than a power of 2). The most popular fast algorithms which approximate
a solution of the maximization problem are multi-level greedy algorithms,
such as those described in [Blondel et al., 2008, Noack and Rotta, 2009,
Rossi and Villa-Vialaneix, 2011] (the first one is better known under the name
of “Louvain algorithm” ; the last one is available as a Java program at http:
//apiacoa.org/research/software/graph/index.en.html).

Exemple. —
• Using the Louvain algorithm, my facebook network can be partitioned

into communities as in Figure 17. The maximum modularity found is
equal to 0.567 and communities can be associated with (approximate)
labels describing the people who are classified inside.

• The medieval network community detection has already been represen-
ted in Figure 10. Underlining communities on the figure help understand
its structure and the way the main persons interact.

3.6 A few more references on clustering

As already said, this vignette does not really tackle the problem of node
clustering in its whole. If you are interested in the subject, I recommend you
this (short and very incomplete) list of references :

• about spectral clustering (which is an alternative and very popular me-
thod to cluster vertices), the article [von Luxburg, 2007] ;

• about using generative (Bayesian) models to cluster vertices,
[Zanghi et al., 2008] ;

• about comparing different clustering algorithms for PPI networks, the
article [Brohée and van Helden, 2006] ;

• about using SOM to cluster vertices and simultaneously project
it on a map to help visualize it, the articles [Boulet et al., 2008,
Rossi and Villa-Vialaneix, 2010] ;

• the revues [Fortunato and Barthélémy, 2007, Schaeffer, 2007] also give
useful hints on overlapping communities communautés chevauchantes,

http://wikistat.fr
http://apiacoa.org/research/software/graph/index.en.html
http://apiacoa.org/research/software/graph/index.en.html

13 An introduction to network inference and mining

FIGURE 17 – My facebook network with communities emphasized by different
colors and labels.

hierarchical clustering, ...
Once the communities found, the network (if big enough) can be represented

in a simplified way using these communities. This can help the user understand
what are the relations between the main clusters and then to focus more pre-
cisely on a few number of clusters. This topic is not shown in this vignette
but more references can be found at http://apiacoa.org/research/
software/graph/index.en.html.

4 Applications
These applications are performed using the free statistical software environ-

ment R. The packages used in these applications are :
• glasso for network inference ;

• igraph for network objects and mining.
The interested reader may want to have a look at the “gRaphical Models in R”
task view where he/she will find further interesting packages.

4.1 Gene network inference

This subsection will show basic functions to infer a network from gene ex-
pression data. A very short analysis of the obtained result is also provided,
mostly aiming at comparing a clustering of genes obtained from the graph and
a clustering of genes obtained from hierarchical clustering on expression data.
Further commands for graph mining are presented in Section 4.2.

4.1.1 Presentation of the dataset

The dataset used in this section is included in the package mixOmics and
can be loaded using :

load data (gene expression)

library(mixOmics)
data(nutrimouse)
summary(nutrimouse)
Length Class Mode

gene 120 data.frame list

lipid 21 data.frame list

diet 40 factor numeric

genotype 40 factor numeric

Although the data contain various information such as the diet or the genotype,
only gene expression will be used for graph inference. It could have been in-
teresting to infer different networks depending from, e.g., the genotype and to
compare them but this task is out of the scope of this simple vignette.

Gene expression distribution can be visualized with the following command
lines and is provided in Figure 18.

expr <- nutrimouse$gene
rownames(expr) <- paste(1:nrow(expr),

nutrimouse$genotype,
nutrimouse$diet,
sep="-")

http://wikistat.fr
http://apiacoa.org/research/software/graph/index.en.html
http://apiacoa.org/research/software/graph/index.en.html
http://cran.univ-paris1.fr
http://cran.r-project.org/web/views/gR.html

14 An introduction to network inference and mining

boxplot(expr, names=NULL)

FIGURE 18 – Distribution of the nutrimouse gene expressions

The gene expression are mostly symmetric with no remarkable outliers which
is fit to use a GGM.

The (simple) correlations between gene expression are displayed in the heat-
map of Figure 19, that shows over and under expressed gene depending on the
genotype and the diet.

expr.c <- scale(expr)
heatmap(as.matrix(expr.c))

FIGURE 19 – Correlation between nutrimouse gene expressions

Finally, using this heatmap, 7 groups are extracted that are shown on the
dendogram of Figure 20 and corresponds to clusters that have a size ranging
from 3 to 52.

http://wikistat.fr

15 An introduction to network inference and mining

hclust.tree <- hclust(dist(t(expr.c)))
plot(hclust.tree)
rect.hclust(hclust.tree, k=7, border=rainbow(7))
hclust.groups <- cutree(hclust.tree, k=7)
table(hclust.groups)
hclust.groups
1 2 3 4 5 6 7

18 4 20 52 17 6 3

FIGURE 20 – 6 clusters extracted from nutrimouse gene expressions

http://wikistat.fr

16 An introduction to network inference and mining

4.1.2 Network inference

Network inference will be performed using the R package huge. This pa-
ckage contains a function able to compute inferred network for a set of dif-
ferent values for the sparse regularization paramater λ of Equation (3), giving
networks that are more or less dense. If no values for λ are provided, the func-
tion uses its own (hopefully reasonable) values :

Inferrence

library(huge)
glasso.res <- huge(as.matrix(expr), method="glasso")
glasso.res
Model: graphical lasso (glasso)

Input: The Data Matrix

Path length: 10

Graph dimension: 120

Sparsity level: 0 -----> 0.2128852

The successive estimated inverses of the covariance matrix (for different λs)
can be evaluated using the function plot on the resulting object

plot(glasso.res)

which displays the evolution of the network density versus the value of λ and
a few network visualization along the λ path, as shown in Figure 21.

The “best” network (according to a stability criterion, StARS) can be selec-
ted using the function huge.select :

glasso.sel <- huge.select(glasso.res,
criterion="stars")

glasso.sel

Model: graphical lasso (glasso)

selection criterion: stars

Graph dimension: 120

sparsity level 0.05490196

which returns a graph with a density about 5.5%. The output of the selection
processed can be visualized using the function plot on the resulting object :

plot(glasso.sel)

FIGURE 21 – Visualization of the results of the inference with GLasso along
the λ path

which gives the Figure 22.

FIGURE 22 – Visualization of the outputs of the λ selection using the StARS
approach

http://wikistat.fr

17 An introduction to network inference and mining

The package huge can also be used to infer relevance networks (i.e., net-
works based on thresholding the Pearson correlation) :

relevance.res <- huge(as.matrix(expr), method="ct",
lambda=seq(0.6,1,length=10))

relevance.res
Model: graph estimation via correlation

thresholding (ct)

Input: The Data Matrix

Path length: 10

Graph dimension: 120

Sparsity level: 0 -----> 0.2182073

plot(relevance.res}

which gives Figure 23. Similarly as what was previously performed, the func-

FIGURE 23 – Visualization of the results of the inference with Pearson corre-
lation thresholding along the thresholding path

tion huge.select can be used on this object to select the most stable thre-
shold.

The graph with 392 edges coming from the GLasso inference (i.e., the one
selected with the StARS method that has a density about 5.5%) is finally kept

and will be analyzed in the following.

4.1.3 Building the network

To define a graph in R, the igraph package can be used. Graphs are stored
as igraph objects and an igraph object can be constructed from the functions
graph.edgelist, graph.data.frame, graph.adjacency, depen-
ding on your data’s format. The following commands show how to build a
network from an binary (TRUE/FALSE) adjacency matrix :

build graphs

library(igraph)
bin.mat <- as.matrix(glasso.sel$opt.icov)!=0
colnames(bin.mat) <- colnames(expr)
nutrimouse.net <- simplify(graph.adjacency(bin.mat,

mode="max"))
nutrimouse.net
IGRAPH UN-- 120 392 --

+ attr: name (v/c)
is.connected(nutrimouse.net)
[1] FALSE

As shown by the function is.connected, the resulting network is
not connected. Its connected components can be found with the function
clusters :

components.nutrimouse <- clusters(nutrimouse.net)
components.nutrimouse
[1] 1 2 3 2 2 4 5 2 2 2 6 2 7 2

...

$csize
[1] 7 67 1 6 2 1 1 1 1 1 1 1 1 2

...

#

$no
[1] 40

The network contains 40 connected components and the largest one has 67
nodes. It can be extracted with the function induced.subgraph :

http://wikistat.fr

18 An introduction to network inference and mining

nutrimouse.lcc <- induced.subgraph(nutrimouse.net,
components.nutrimouse$membership==
which.max(components.nutrimouse$csize))

nutrimouse.lcc
IGRAPH UN-- 67 375 --

+ attr: name (v/c)

4.1.4 Short mining of the network

igraph also comes up with tools to perform graph mining. For instance, the
graph can be visualized using the function plot 3 that displays the graph as in
Figure 24 :

par(mar=rep(0.1,4))
set.seed(1832)
nutrimouse.lcc$layout <- layout.kamada.kawai(

nutrimouse.lcc)
plot(nutrimouse.lcc, vertex.size=2,

vertex.color="lightyellow",
vertex.frame.color="lightyellow",
vertex.label.color="black",
vertex.label.cex=0.7)

3. More information on this function is provided in Section 4.2.

FIGURE 24 – Visualization of the network inferred from nutrimouse gene
expressions

http://wikistat.fr

19 An introduction to network inference and mining

Algorithms that perform node clustering can also be used, such as the one
implemented in the function spinglass.community 4. As this function
involved a stochastic process, its result depends on the initialization. It is thus
recommended to run it several times and to keep the best results (on a modula-
rity point of view). For the sake of simplicity, we will only use one call of the
function and set the random seed before to obtain identical results.

set.seed(66)
clusters.nutrimouse <-

spinglass.community(nutrimouse.lcc)
clusters.nutrimouse
Graph community structure calculated with the

spinglass algorithm

Number of communities: 4

Modularity: 0.3136604

Membership vector:

ACAT1 ACBP ACC1 ADISP ADSS1

1 3 1 1 2

...

table(clusters.nutrimouse$membership)
1 2 3 4

15 25 17 10

4 clusters are extracted by the algorithm for a modularity equal to 0.314 with
varying sizes ranging from 10 to 25. This clustering can be compared to the
one previously obtained by a simple hierarchical clustering on the gene expres-
sions.

induced.hclust.groups <- hclust.groups[
components.nutrimouse$membership==
which.max(components.nutrimouse$csize)]

table(induced.hclust.groups)
1 3 4 5 6

6 17 42 1 1

Hierarchical clustering provides 5 clusters for the nodes of the largest connec-
ted components of the graph, those sizes vary from 1 to 42. The comparison

4. More information on this function and on node clustering is provided in Section 4.2.

between the two clusterings can be done by parallel visualizations as shown in
Figure 25 or using the function compare.communities :

par(mfrow=c(1,2))
par(mar=rep(1,4))
plot(nutrimouse.lcc, vertex.size=5,

vertex.color=rainbow(6)[induced.hclust.groups],
vertex.frame.color=
rainbow(6)[induced.hclust.groups],
vertex.label=NA,

main="Hierarchical clustering")
plot(nutrimouse.lcc, vertex.size=5,

vertex.color=rainbow(4)[
clusters.nutrimouse$membership],

vertex.frame.color=rainbow(4)[
clusters.nutrimouse$membership],

vertex.label=NA, main="Graph clustering")
compare.communities(induced.hclust.groups,

clusters.nutrimouse$membership,
method="nmi")

[1] 0.5091568

The index used here to compare the two clustering is the normalized mutual
information as given in [Danon et al., 2005]. It ranges between 0 and 1, 1 being
found when the two partitions are identical. The value found by this function
as well as the visualization show that the two clusterings are rather different,
the one obtained from the network itself having more balanced clusters and
also a larger modularity :

modularity(nutrimouse.lcc, induced.hclust.groups)
[1] 0.2368462

4.2 Facebook network mining

This subsection will show basic functions to display a graph, calculate its
main numerical characteristics and compute communities with the R package

http://wikistat.fr

20 An introduction to network inference and mining

FIGURE 25 – Visualization of two clusterings obtained from nutrimouse
gene expressions : hierarchical clustering (left) and node clustering (right)

igraph. All manipulations are done using my facebook network 5. Most of the
information extracted in this section have already been shown and/or commen-
ted in the previous sections.

The data can be downloaded from two datasets :
• fbnet-el-1.txt that contains the edgelist (text format) ;
• fbnet-names-1.txt that contains the names of the vertices (ini-

tials actually).

edgelist <- as.matrix(read.table("fbnet-el-1.txt"))
vnames <- read.table("fbnet-name-1.txt")
vnames <- as.character(vnames[,1])

5. You can use your own facebook network to test this script after having downloaded it with
the on-line application http://shiny.nathalievilla.org/fbs. This application has
been developed using the R package shiny, http://www.rstudio.com/shiny.

Building an igraph object

igraph object can be constructed from the functions graph.edgelist,
graph.data.frame, graph.adjacency, depending on your data’s for-
mat. The two following commands build a network from an edge list only :

with ’graph.edgelist’

fbnet0 <- graph.edgelist(edgelist, directed=FALSE)
network summary

fbnet0
IGRAPH U--- 152 551 --

Vertices are accessed using the function V and the number of vertices using the
function vcount :

vertices

V(fbnet0)
vcount(fbnet0)

igraph can handle attributes on vertices, edges and also graph attributes. The
following lines add the attributes initials to the vertices of the graph :

add an attribute for vertices

V(fbnet0)$initials <- vnames
fbnet0
IGRAPH U--- 152 551 --

+ attr: initials (v/x)

Edges are accessed using the function E and the number of edges using the
function ecount :

http://wikistat.fr
http://www.nathalievilla.org/doc/txt/fbnet-el-1.txt
http://www.nathalievilla.org/doc/txt/fbnet-name-1.txt
http://shiny.nathalievilla.org/fbs
http://www.rstudio.com/shiny

21 An introduction to network inference and mining

edges

head(E(fbnet0))
[1] 11 -- 1

[2] 41 -- 1

[3] 52 -- 1

[4] 69 -- 1

[5] 74 -- 1

[6] 75 -- 1

ecount(fbnet0)
551

(first five edges are printed).

Macro-characteristics of the graph

The first step is usually to check if the network is connected :

is.connected(fbnet0)
[1] FALSE

As this network is not connected, the connected components can be extracted :

fb.components <- clusters(fbnet0)
names(fb.components)
[1] "membership" "csize" "no"

head(fb.components$membership, 10)
[1] 1 1 2 2 1 1 1 1 3 1

fb.components$csize
[1] 122 5 1 1 2 1 1 1 2 1

[11] 1 2 1 1 2 3 1 1 1 1

[21] 1

fb.components$no
[1] 21

As the network is composed of 21 components with only one containing more
than 5 nodes, the rest of the analysis will focus on this component only. It is
called the largest connected component of the graph and can be extracted by :

fbnet.lcc <- induced.subgraph(fbnet0,
fb.components$membership==
which.max(fb.components$csize))

main characteristics of the LCC

fbnet.lcc
IGRAPH U--- 122 535 --

+ attr: initials (v/x)
is.connected(fbnet.lcc)
[1] TRUE

Finally, the graph’s density and the transitivity can be found this way :

graph.density(fbnet.lcc)
[1] 0.0724834

transitivity(fbnet.lcc)
[1] 0.5604524

The transitivity of the graph is much larger than its density, which indicates
dense local patterns.

4.2.1 Visualization

The function plot applied to an igraph object displays the graph on the
graphic device. This function possesses several handy options (that begins with
vertex.) to handle node positions, size, colors, labels and similarly for edges
(these options begins with edge.). The layout of the graph can be attached to
the igraph object, using the attribute layout.

The following command lines :

http://wikistat.fr

22 An introduction to network inference and mining

par(mfrow=c(2,2))
default layout

plot(fbnet.lcc, layout=layout.random,
main="random layout", vertex.size=3,
vertex.color="pink", vertex.frame.color="pink",
vertex.label.color="darkred",
edge.color="grey",
vertex.label=V(fbnet.lcc)$initials)

plot(fbnet.lcc, layout=layout.circle,
main="circular layout", vertex.size=3,
vertex.color="pink", vertex.frame.color="pink",
vertex.label.color="darkred", edge.color="grey",
vertex.label=V(fbnet.lcc)$initials)

plot(fbnet.lcc, layout=layout.kamada.kawai,
main="Kamada Kawai layout",
vertex.size=3, vertex.color="pink",
vertex.frame.color="pink",
vertex.label.color="darkred", edge.color="grey",
vertex.label=V(fbnet.lcc)$initials)

set the attribute ’layout’ for the graph

fbnet.lcc$layout <-
layout.fruchterman.reingold(fbnet.lcc)

V(fbnet.lcc)$label <- V(fbnet.lcc)$initials
plot(fbnet.lcc,

main="Fruchterman & Reingold layout",
vertex.size=3, vertex.color="pink",
vertex.frame.color="pink",
vertex.label.color="darkred", edge.color="grey")

give the representations provided in Figure 26. Due to randomness into some
of the algorithms that display graph, the results obtained at each execution of
these lines may differ a little but the overview should remain the same 6.

For further details and options on graph visualization with igraph, refer to
help(igraph.plotting). Interactive graph representation can be obtai-

6. Using the function set.seed before calling a layout generating function fixes the ran-
domness and provides reproducible results.

FIGURE 26 – Different layouts obtained with plot.igraph and the func-
tions layout.

ned with tkplot but we advice the user to use rather Gephi than igraph
for interactive visualizations.

http://wikistat.fr
http://gephi.org

23 An introduction to network inference and mining

4.2.2 Individual characteristics

Degrees are calculated with the command degree and betweenness is cal-
culated with the command betweenness :

fbnet.degrees <- degree(fbnet.lcc)
summary(fbnet.degrees)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 2.00 6.00 8.77 15.00 31.00

fbnet.between <- betweenness(fbnet.lcc)
summary(fbnet.between)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 14.03 301.70 123.10 3439.00

Both degree and betweenness distribution are skewed as their means are larger
(or even much larger) than their betweenness centrality measures. This fact
is standard in many real-life networks where most nodes have a small degree
(or betweenness) whilst a few number of nodes have a very large degree (or
betweenness) in comparison.

The distributions can be visualized using, e.g., a density plot :

par(mfrow=c(1,2))
plot(density(fbnet.degrees), lwd=2,

main="Degree distribution", xlab="Degree",
ylab="Density", col="darkred")

plot(density(fbnet.between), lwd=2,
main="Betweenness distribution",
xlab="Betweenness", ylab="Density",
col="darkred")

that gives Figure 27 and confirms our first guess.

Finally, this information can be combined with graph visualization to em-
phasize the most important nodes on the network, which gives the representa-
tion of Figure 28.

FIGURE 27 – Degree and betweenness densities.

par(1)
par(mar=rep(1,4))
V(fbnet.lcc)$size <- 2*sqrt(fbnet.degrees)
bet.col <- cut(log(fbnet.between+1),10,

labels=FALSE)
V(fbnet.lcc)$color <- heat.colors(10)[11-bet.col]
plot(fbnet.lcc, main="Degree and betweenness",

vertex.frame.color=heat.colors(10)[bet.col],
vertex.label=NA, edge.color="grey")

This representation is particularly handy since it shows that high between-
ness nodes are not necessarily hubs. Actually, the nodes having the highest
betweenness are those that are connecting different “parts” of the network,
whereas the hubs are mostly located in its densest part.

http://wikistat.fr

24 An introduction to network inference and mining

FIGURE 28 – Degree (node sizes are proportional to degrees) and betweenness
(node colors represents betweenness with red colors for high betweenness)

4.2.3 Clustering

Several algorithms can be used to cluster networks into communities. Most
of them are based on the maximization of the modularity (with an exact or
an approach method ; exact methods have a prohibited computational time
for networks with more than a hundred nodes). In the following the function
spinglass.community is used. This algorithm is the one described in
[Reichardt and Bornholdt, 2006] which optimizes a criterion that generalizes
the modularity with a deterministic algorithm (default options lead to modula-
rity optimization). The results obtained when the random seed is not fixed may
differ from one call to another but the different results should be very similar.
More information on the methods used in the different algorithms is provided
with help(communities).

fbnet.clusters <- spinglass.community(fbnet.lcc)
fbnet.clusters
Graph community structure calculated with

the spinglass algorithm

Number of communities: 9

Modularity: 0.5654136

Membership vector:

[1] 9 5 6 5 5 9 1 9 1 1 4 9 9 6 2 7 2 7 2 7 5

[21] 5 3 8 1 4 7 9 4 4 2 7 7 4 5 9 3 6 7 5 7 9

[41] 4 5 7 3 4 9 9 8 9 6 9 9 5 9 9 9 9 9 4 9 7

[61] 9 9 9 4 2 9 5 4 9 5 4 3 4 9 4 4 4 1 7 4 4

[81] 7 4 4 4 9 3 4 4 7 7 4 6 5 4 4 1 4 5 3 4 4

[101] 4 7 7 3 6 5 4 1 4 2 2 1 3 7 4 6 7

table(fbnet.clusters$membership)
1 2 3 4 5 6 7 8 9

8 7 8 32 14 7 18 2 26

This algorithm leads to partition the graph into 9 clusters with a mo-
dularity equal to 0.565 (there is no upper bound to compare the mo-
dularity with, although its absolute value is always smaller than 1 ;
[Rossi and Villa-Vialaneix, 2011] proposes to use a test based on random
graphs to check whether this value is significant or not). The clusters’ size
range from 2 to 32. The community number can be added to the data as a
node attribute (usefull if you wan to use it in an external program, such as

Gephi :

V(fbnet.lcc)$community <- fbnet.clusters$membership
fbnet.lcc
IGRAPH U--- 122 535 --

+ attr: layout (g/n), initials (v/c),
label (v/c), size (v/n), color (v/c),
community (v/n)

Finally, the clustering can be visualized on the graph with by using the fol-
lowing command lines :

http://wikistat.fr
http://gephi.org

25 An introduction to network inference and mining

par(mfrow=c(1,1))
par(mar=rep(1,4))
plot(fbnet.lcc, main="Communities",

vertex.frame.color=
rainbow(9)[fbnet.clusters$membership],

vertex.color=
rainbow(9)[fbnet.clusters$membership],

vertex.label=NA, edge.color="grey")

FIGURE 29 – 9 communities found by the algorithm
spinglass.communities

4.2.4 Export graph

For external use, the graph can be exported as a graphml file (that can be
read by most of the graph visualization programs and that includes information
on node and edge attributes) :

write.graph(fbnet.lcc, file="fblcc.graphml",

format="graphml")

Further information on exportation format are provided with
help(write.graph).

Références
[Barabási and Albert, 1999] Barabási, A. and Albert, R. (1999). Emergence

of scaling in random networks. Science, 286 :509–512.

[Blondel et al., 2008] Blondel, V., Guillaume, J., Lambiotte, R., and Lefebvre,
E. (2008). Fast unfolding of communites in large networks. Journal of
Statistical Mechanics : Theory and Experiment, P10008 :1742–5468.

[Boulet et al., 2008] Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008).
Batch kernel SOM and related Laplacian methods for social network analy-
sis. Neurocomputing, 71(7-9) :1257–1273.

[Brohée and van Helden, 2006] Brohée, S. and van Helden, J. (2006). Evalua-
tion of clustering algorithms for protein-protein interaction networks. BMC
Bioinformatics, 7(488).

[Butte and Kohane, 1999] Butte, A. and Kohane, I. (1999). Unsupervised
knowledge discovery in medical databases using relevance networks. In
Proceedings of the AMIA Symposium, pages 711–715.

[Butte and Kohane, 2000] Butte, A. and Kohane, I. (2000). Mutual informa-
tion relevance networks : functional genomic clustering using pairwise en-
tropy measurements. In Proceedings of the Pacific Symposium on Biocom-
puting, pages 418–429.

[Charbonnier et al., 2010] Charbonnier, C., Chiquet, J., and Ambroise, C.
(2010). Weighted-lasso for structured network inference from time course
data. Statistical Applications in Genetics and Molecular Biology, 9(1).

[Chiquet et al., 2011] Chiquet, J., Grandvalet, Y., and Ambroise, C. (2011).
Inferring multiple graphical structures. Statistics and Computing,
21(4) :537–553.

[Chiquet et al., 2009] Chiquet, J., Smith, A., Grasseau, G., Matias, C., and
Ambroise, C. (2009). SIMoNe : Statistical Inference for MOdular NEt-
works. Bioinformatics, 25(3) :417–418.

http://wikistat.fr

26 An introduction to network inference and mining

[Csardi and Nepusz, 2006] Csardi, G. and Nepusz, T. (2006). The igraph soft-
ware package for complex network research. InterJournal, Complex Sys-
tems.

[Danaher et al., 2014] Danaher, P., Wang, P., and Witten, D. (2014). The joint
graphical lasso for inverse covariance estimation accross multiple classes.
Journal of the Royal Statistical Society Series B, 76(2) :373–397.

[Danon et al., 2005] Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A.
(2005). Comparing community structure identification. Journal of Statisti-
cal Mechanics, page P09008.

[Fortunato and Barthélémy, 2007] Fortunato, S. and Barthélémy, M. (2007).
Resolution limit in community detection. In Proceedings of the Natio-
nal Academy of Sciences, volume 104, pages 36–41. doi :10.1073/p-
nas.0605965104 ; URL : http://www.pnas.org/content/104/
1/36.abstract.

[Foygel and Drton, 2010] Foygel, R. and Drton, M. (2010). Extended Baye-
sian information criteria for Gaussian graphical models. In Proceedings of
Neural Information Processing Systems (NIPS 2010), pages 604–612, Van-
couver, Canada.

[Friedman et al., 2008] Friedman, J., Hastie, T., and Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graphical lasso. Biostatistics,
9(3) :432–441.

[Fruchterman and Reingold, 1991] Fruchterman, T. and Reingold, B. (1991).
Graph drawing by force-directed placement. Software, Practice and Expe-
rience, 21 :1129–1164.

[Gonzàles et al., 2012] Gonzàles, I., Lê Cao, K., Davis, M., and Déjean, S.
(2012). Visualising associations between paired ’omics data sets. BioData
Mining, 5 :19.

[Huynh-Thu et al., 2010] Huynh-Thu, V., Irrthum, A., Wehenkel, L., and
Geurts, P. (2010). Inferring regulatory networks from expression data using
tree-based methods. PLoS ONE, 5(9) :e12776.

[Langfelder and Horvath, 2008] Langfelder, P. and Horvath, S. (2008).
WGCNA : an R package for weighted correlation network analysis. BMC
Bioinformatics, 9 :559.

[Liu et al., 2010] Liu, H., Roeber, K., and Wasserman, L. (2010). Stability ap-
proach to regularization selection for high dimensional graphical models. In
Proceedings of Neural Information Processing Systems (NIPS 2010), pages
1432–1440, Vancouver, Canada.

[Lysen, 2009] Lysen, S. (2009). Permuted Inclusion Criterion : A Variable
Selection Technique. PhD thesis, University of Pennsylvania.

[Martin et al., 2007] Martin, P., Guillou, H., Lasserre, F., Déjean, S., Lan, A.,
Pascussi, J., San Cristobal, M., Legrand, P., Besse, P., and Pineau, T. (2007).
Novel aspects of PPARα-mediated regulation of lipid and xenobiotic meta-
bolism revealed through a multrigenomic study. Hepatology, 54 :767–777.

[Meinshausen and Bühlmann, 2006] Meinshausen, N. and Bühlmann, P.
(2006). High dimensional graphs and variable selection with the lasso. An-
nals of Statistic, 34(3) :1436–1462.

[Meyer et al., 2008] Meyer, P., Lafitte, F., and Bontempi, G. (2008). minet : A
R/Bioconductor package for inferring large transcriptional networks using
mutual information. BMC Bioinformatics, 9(461).

[Mohan et al., 2012] Mohan, K., Chung, J., Han, S., Witten, D., Lee, S., and
Fazel, M. (2012). Structured learning of Gaussian graphical models. In
Proceedings of NIPS (Neural Information Processing Systems) 2012, Lake
Tahoe, Nevada, USA.

[Newman and Girvan, 2004] Newman, M. and Girvan, M. (2004). Finding
and evaluating community structure in networks. Physical Review, E,
69 :026113.

[Noack and Rotta, 2009] Noack, A. and Rotta, R. (2009). Multi-level algo-
rithms for modularity clustering. In SEA 2009 : Proceedings of the 8th In-
ternational Symposium on Experimental Algorithms, pages 257–268, Ber-
lin, Heidelberg. Springer-Verlag.

[Opgen-Rhein and Strimmer, 2006] Opgen-Rhein, R. and Strimmer, K.
(2006). Inferring gene dependency networks from genomic longitudinal
data : a functional data approach. REVSTAT, 4 :53–65.

[Pearl, 1998] Pearl, J. (1998). Probabilistic reasoning in intelligent systems :
networks of plausible inference. Morgan Kaufmann, San Francisco, Cali-
fornia, USA.

[Pearl and Russel, 2002] Pearl, J. and Russel, S. (2002). Bayesian Networks.
Bradford Books (MIT Press), Cambridge, Massachussets, USA.

http://wikistat.fr
http://www.pnas.org/content/104/1/36.abstract
http://www.pnas.org/content/104/1/36.abstract

27 An introduction to network inference and mining

[Reichardt and Bornholdt, 2006] Reichardt, J. and Bornholdt, S. (2006). Sta-
tistical mechanics of community detection. Physical Review, E, 74(016110).

[Rossi and Villa-Vialaneix, 2010] Rossi, F. and Villa-Vialaneix, N. (2010).
Optimizing an organized modularity measure for topographic graph cluste-
ring : a deterministic annealing approach. Neurocomputing, 73(7-9) :1142–
1163.

[Rossi and Villa-Vialaneix, 2011] Rossi, F. and Villa-Vialaneix, N. (2011).
Représentation d’un grand réseau à partir d’une classification hiérarchique
de ses sommets. Journal de la Société Française de Statistique, 152(3) :34–
65.

[Schaeffer, 2007] Schaeffer, S. (2007). Graph clustering. Computer Science
Review, 1(1) :27–64.

[Schäfer and Strimmer, 2005a] Schäfer, J. and Strimmer, K. (2005a). An em-
pirical bayes approach to inferring large-scale gene association networks.
Bioinformatics, 21(6) :754–764.

[Schäfer and Strimmer, 2005b] Schäfer, J. and Strimmer, K. (2005b). A shrin-
kage approach to large-scale covariance matrix estimation and implication
for functional genomics. Statistical Applications in Genetics and Molecular
Biology, 4 :1–32.

[Scutari, 2010] Scutari, M. (2010). Learning Bayesian networks with the bn-
learn R package. Journal of Statistical Software, 35(3) :1–22.

[Villa-Vialaneix et al., 2014] Villa-Vialaneix, N., Vignes, M., Viguerie, N.,
and San Cristobal, M. (2014). Inferring networks from multiple samples
with concensus LASSO. Quality Technology and Quantitative Manage-
ment, 11(1) :39–60.

[von Luxburg, 2007] von Luxburg, U. (2007). A tutorial on spectral cluste-
ring. Statistics and Computing, 17(4) :395–416.

[Zanghi et al., 2008] Zanghi, H., Ambroise, C., and Miele, V. (2008). Fast
online graph clustering via erdös-rényi mixture. Pattern Recognition,
41 :3592–3599.

http://wikistat.fr

	Basic definitions and concepts for graphs / networks
	Examples
	Overview of standard issues for network analysis
	More complex relational models

	Network inference
	Basics about network inference
	Relevance network
	Gaussian Graphical Model
	Estimating partial correlations in GGM
	Estimating the conditional dependency graph with Graphical LASSO

	Other references

	Network mining
	Basic definitions
	Network visualization
	Global characteristics
	Individual characteristics
	Clustering Classification
	A few more references on clustering

	Applications
	Gene network inference
	Presentation of the dataset
	Network inference
	Building the network
	Short mining of the network

	Facebook network mining
	Visualization
	Individual characteristics
	Clustering
	Export graph

