

Super-resolution imaging reveals principles of physical chromatin folding in *eukaryotes*

Frédéric Bantignies

Chromosome Conformation Symposium - Toulouse 04/12/2019

Inside cell nucleus, the genome is highly compacted and folded as a chromatin fiber

Rosa & Shaw, 2013

The different level of genome organization

Marti-Renom and Mirny, PLoSComputational Biology 2011

Chromosome Conformation Capture (Hi-C)

Rao *et al,* 2014 (in situ Hi-C)

Marti-Renom and Mirny, PLoSComputational Biology 2011

Hi-C maps represent three main levels of genome folding

TADs represent genomic region of highly interacting chromatin with few interactions spanning their borders

Adapted from Szabo, Bantignies, Cavalli, Science Advances 2019 and Mota-Gomez, Lupianez, Genes 2019

TADs are a conserved genomic feature with species specificities

VS.

Fly

- Median size: ~ 100 kb
- Coincide well with the alternation of repressed and active chromatin marks

Sexton *et al.*, Cell 2012 Nora *et al.*, Nature 2012 Dixon *et al.*, Nature 2012 Hou *et al.*, Molecular Cell 2012

Mammals

- Median size: ~ 900 kb
- Presence of corner peaks (structural architectural loops)
- Presence of Enhancer-Promoter loop (functional loops)

TADs are considered as functional genomic units

- Median size: ~ 100 kb
- Coincide well with the alternation of repressed and active chromatin marks (Sexton et al, 2012)

- Median size: ~ 900 kb
- Presence of corner peaks (structural architectural loops)
- Presence of Enhancer-Promoter loop (functional loops)
- Genes within TADs are co-regulated (Nora *et al*, 2012; Zhan *et al*, 2017)
- Enhancer/promoter contacts are restricted within TADs (Symmons *et al*, 2014; Bonev *et al*, 2017)
- Disruption of boundary leads to ectopic gene expression (Lupianez *et al*, 2015; Hniz *et al*, 2016; Rodriguez-Carballo *et al*, 2017)

TADs are considered as functional genomic units

Whether TADs structure is compatible with their functional role ?

Indeed, they can represent the manifestation of average interactions from large cell populations and therefore we need to understand their structure before to claim that they represent functional domains

We undertook a structural approach combining Hi-C / Oligopaint technology / super-resolution microscopy in Drosophila

The Oligopaint 3D-FISH technology

- > Represents a new generation of FISH probes entirely derived from synthetic DNA oligonucleotides
- Production of ssDNA oligo pools able to recognize any portion of the genome in various organisms, from 10 kb to several Mb, avoiding repetitive sequences

HARVARD MEDICAL SCHOOL

https://oligopaints.hms.harvard.edu

Super-Resolution Microscopy (SRM)

Schermelleh, Heintzmann and Leonhardt, J.cell.Biol. 2010

In *Drosophila*, TADs corresponds to the alternation of chromatin states

Repressed chromatin ; Active chromatin

- Active chromatin: H3K4me3/H3K36me3/H3K27ac/gene dense/ubiquitously active
- Repressed chromatin: H3K27me3/Polycomb proteins or Void chromatin/gene poor/specific activation during developmental programs

Adapted from Szabo, Bantignies, Cavalli, Science Advances 2019

Dual labeling of the chromatin fiber

Local chromatin compaction reflects the chromatin state

Local chromatin compaction reflects the chromatin state

Local chromatin compaction reflects the chromatin state

Investigating TAD structures in vivo

Investigating TAD structures in vivo

Repressed TADs spatially confine the chromatin fiber

Repressed TADs spatially confine the chromatin fiber

Repressed TADs form discrete 3D chromosomal units or nanocompartments

Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes

Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes

Repressed TADs form discrete 3D chromosomal units or nanocompartments

Repressed TADs form discrete 3D chromosomal units or nanocompartments

Polymer modeling of the chromatin fiber

Self-avoiding and self-interacting polymer model of the region of interest

Daniel Jost

Daniel Jost

What about shorter *inter* versus *intra*-TAD distances?

What about shorter *inter* versus *intra*-TAD distances?

The relative TAD positioning can explain shorter *inter* versus *intra*-TAD distances

The relative TAD positioning can explain shorter *inter* versus *intra*-TAD distances

Organization of the chromatin fiber in *Drosophila* interphase nuclei

CAVALLI lab

Giacomo Cavalli Quentin Szabo Thierry Cheutin Anne-Marie Martinez Bernd Schuettengruber Laurianne Fritsch **Giorgio L. Papadopoulos Boyan Bonev** Satish Sati Yuki Ogiyama **Sandrine Denaud** Vincent Loubière **Ivana Jerkovic Axelle Donjon**

Alumni **Virginie Roure Benjamin Leblanc Itys Comet Fillipo Ciabrelli Caroline Jacquier**

NOLLMANN lab Centre de Biochimie Structurale **CNRS Univ Montpellier Marcelo Nollmann Diego Cattoni Julian Gurgo**

Amos Tanay Weizmann Institute Israël

erc AGENCE NATIONALE DE LA RECHERCIE

BioCampus Montpellier Ressources **Imagerie facility Julio Mateos Langerak**

Daniel Jost TIMCS-IMAG **CNRS Univ Grenoble Alpes**

Jia-Ming Chang National Chengchi University

Tom Sexton Institut de Génétique et de Biologie Moléculaire et Cellulaire **CNRS INSERM Univ Strasbourg**

BioCampus Drosophila facility