Exploring the dimensions of the genome organization: 1D chromatin tracks and 2D interaction maps for generating 4D models

Marco Di Stefano

from Structural Genomics Group CNAG-CRG

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

2019/12/05 @INSA Toulouse

Resolution Gap

Adapted from: MA Marti-Renom & LA Mirny PLoS Comput Biol 2011.

Resolution Gap

Adapted from: MA Marti-Renom & LA Mirny PLoS Comput Biol 2011.

Resolution Gap

Adapted from: MA Marti-Renom & LA Mirny PLoS Comput Biol 2011.

TADbit: Hybrid Method Experiments

Crosslink DNA Fill ends Purify and shear DNA; Sequence using Cut with Ligate paired-ends restriction and mark pull down biotin enzyme with biotin • • 81 5----

D Baù and MA Marti-Renom *Methods* 2012; F Serra, D Baù and MA Marti-Renom *PLoS Comp Biol* 2017; MDS and MA Marti-Renom, *Restraint-Based Modeling of Genomes and Genomic Domains* 2019.

Computation

Novel developments in hybrid methods

2D Hi-C interaction maps over time

TADphys: MDS et al., In preparation; TADdyn: MDS et al., bioRxiv 2019

3D genome-wide models

4D gene-specific models

TAD*phys*

Polymer model Molecular dynamics

TAD*dyn*

Dynamics of gene expression

T Graf **CRG**

MDS et al., bioRxiv 2019

MA Marti-Renom CRG

Reprogramming from B to PSC

CRG

Mouse strain development: B Di Stefano...T Graf Nat. Cell Biol. 2016. **Expression data**: R Stadhouders, E Vidal...T Graf *Nature Genet.* 2018.

In situ Hi-C data: R Stadhouders, E Vidal...T Graf Nat. Genet. 2018.

Hi-C maps of reprogramming from B to PSC

Hi-C maps of reprogramming from B to PSC

What are the main drivers of structural transitions?

We use Hi-C data and steered molecular dynamics simulations of coarsegrained chromatin models to study the structural transitions

How does these structural rearrangements interplay with the transcription activity?

TADdyn modelling: initial conformations

Optimal TADbit parameters lowfreq=0, upfreq=1, maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

TADdyn: from time-series Hi-C maps to dynamic restraints

Optimal TADbit parameters lowfreq=0, upfreq=1, maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

TADdyn: from time-series Hi-C maps to dynamic restraints

Energy penalty

TADdyn: from time-series Hi-C maps to dynamic restraints

Energy penalty

Transition	Stable	Vanishing	Raising
Β -> Β α	3.271	1.575	1.730
Β α -> D2	3.386	1.615	1.597
D2 -> D4	3.473	1.510	1.488
D4 -> D6	3.704	1.257	1.766
D6 -> D8	3.890	1.580	1.432
D8 -> ES	3.989	1.333	1.592

SOX2 locus structural changes from B to PSC Contacts

SE SOX2

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus structural changes from B to PSC Domain borders

SOX2 locus structural changes from B to PSC Displacement of the TSS

TSS particle positions during the TADdyn dynamics

SOX2 locus structural changes from B to PSC Displacement of the TSS

We divided the trajectory in groups of 50 time steps, and compute the convex hull volume of these groups of points.

SOX2 locus structural changes from B to PSC Displacement of the TSS

The trajectories are divided between the expressed (red) and not-expressed (blue) stages.

Expressed - Not-expressed - Random

SOX2 locus structural changes from B to PSC Displacement of the TSS

SOX2 locus structural changes from B to PSC Displacement of the TSS

SOX2 locus structural changes from B to PSC Displacement of the TSS

Scale bars, 5 μ m. (**B**) Mobility of the *Fgf5* enhancer correlates with nascent transcription of the *Fgf5* locus at the single-cell level. Cells were binned into three groups according to the transcription status of the *Fgf5* locus, as measured by multiplexed smFISH and indicated at the bottom. Individual dots represent apparent anomalous diffusion coefficients extracted from the corresponding live-imaging tMSD data. Statistical significance is supported

B Gu & J Wysocka *Science* 2018

The take home message of Part 2

super-enhancer region.

and its dynamics is spatially confined.

 TADdyn models show <u>structural transition</u> of the SOX2 region from an *inactive* state before D4 to an *active* state after D6.

 TADdyn dynamics shows that the gene activation is favoured by the formation of a spatial cage accommodating the TSS its

Once engaged by open/active regions, the gene is transcribed

Citizen Science project

Genigma.app #Genigma3D
@Genigma

Annotating translocations in cancer cells

HEK293

HAP1

L Harewood et al Genome Biol 2017

MP Mattson Front. Neurosci. 2014

Genigma: Why citizens?

The App prototype

Marc A. Marti-Renom David Castillo Yasmina Cuartero Irene Farabella Silvia Galan Mike Goodstadt Rodrigo Jara Francesca Mugianesi Julen Mendieta Juan Rodriguez Maria Marti-Marimon Paula Soler Aleksandra Sparavier

Thanks for listening!

D Jost ENS de Lyon

R Stadhouders & T Graf CRG