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Chromatin 3D structure
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Ea et al. 2015 Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization.
Stevens et al. 2017 3D structures of individual mammalian genomes studied by single-cell Hi-C
Nagano et al. 2017 Cell-cycle dynamics of chromosomal organization at single-cell resolution
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Chromatin networks (@‘&RCT

Genomic coordinates

3D contacts ZZ Z S E

l ‘ 3D network

10 G
a8



. : . CRCT
Principal players in gene regulation © "

Polycomb — gene repression
RNAPII — gene transcription (RNAPIIS2p needed for elongation)

Genes can be co-transcribed (Promoter-Promoter contact, PP)
Regulatory regions bind the gene promoters to activate genes (PO)
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What about genes? PCHiC! @ T

Problem so far: Genome wide interaction networks are dominated by interactions far from genes. Need
very high coverage to pick promoters and see their interactions.

Solution: Promoter-Capture HiC (PCHIC)

Add promoter capture step

To ensure only interactions involving at least one promoter are kept.
(No pull-downs, genome-wide)

Can look for transcription factories:
Regions where functionally related transcripts are transcribed

Chakalova et al. 2015, Replication and transcription: Shaping the landscape of the genome; Schoenfelder, S. et
al. 2015, The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.



The 3D genome as a network @ =

Chromosome capture experiment Some other network approaches to chromatin:
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Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.



Chromatin Assortativity of epigenetic marks@ ¢!

Project ChIP-seq datasets on 3D chromatin interaction network Do regions with specific marks cluster?
PCHiC networks in mouse Embryonic Stems Cells mESCs) Inspired by social networks (the twitter story)
( Collaboration with Peter Fraser, Babraham Institute) Define Chromatin Assortativity (ChAs)
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Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
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Promoter Capture HiC networks in mESC @ creT

Nodes are chromatin fragments (5kb median size)
Connections (edges) are 3D contacts
Significant contacts are detected using CHICAGO
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Schoenfelder et al. 2015 The pluripotent regulatory circuitry connecting promoters to their long-range
interacting elements.

Cairns et al. 2016 CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.



Comparing ChAs in P-P and P-O subnetworks @ R

Identify features that have different ChAs in P-P and P-O contacts in mESC
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Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.



Assortativity of RNAPII

5 Different RNAPII features

Binding peaks for different RNAPII variants
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Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.



Chromatin network analysis @ &

Apply Moduland (Cytoscape plugin) to identify overlapping chromatin communities, measure bridgeness

Bridgeness Betweenness Degree cC Party/date
centrality
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Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
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The model ©

Whereas RNAPII S5P accumulates in transcription factories, RNAPII S2p stays peripheral

Gene bady

RNAPI
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A model of transcription; gene promoters are loaded with
RNAPII-Ser5P (Ser5 light gray) in factories. Elongating RNAPI
S2p (Ser2, dark gray) moves to the adjacent nuclear space
when it becomes phosphorylated at Ser2 by CDK9
A. Ghamari et al. In vivo live imaging of RNA polymerase I
transcription factories in primary cells Genes Dev.
R 2013;27:767-777

I Ghavi-Helm et al. Enhancer loops appear stable during
' Wl | development and are associated with paused polymerase.
Nature. 2014;512:96—-100.

Pancaldi et al. 2016 Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
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Other applications



GARDEN-NET

Genome ARchitecture Data, Epigenome and Nucleome - Network Exploration Tool

https://pancaldi.bsc.es/garden-net

Here you will be able to visualize chromosome conformation capture datasets
as networks of interacting chromatin fragments. The published datasets
available were generated with the Promoter Capture HiC technique, which
returns contacts involving promoters. For more Information see:
GARDEN-NET and ChAseR: a suite of tools for the analysis of chromatin
networks

Left click on nodes to navigate to WashU browser.
Right click on nodes to zoom into their neighborhood.

Chromosome 12
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GARDEN-NET uses functionality provided by the ChAseR R package to integrate
datasets and compute chromatin assortativity (Pancaldi et al. 2016).

User submitted features can also be visualized on the networks and used for the
network based calculations.

A selection of epigenomic features that have been mapped to the chromatin
fragments will be available from the drop-down menu on the right. Select one of
them to visualize chromatin fragments that have that feature and to calculate
statistics relating to this feature and the 3D network.
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Madrid*, Raineri* and Pancaldi, 2019 GARDEN-NET and ChAseR: a suite of tools for the analysis of chromatin networks

BioRxiv 717298, (submitted)



GARDEN-NET (@ CR T

Genome ARchitecture Data, Epigenome and Nucleome- Network Exploration Tool T

Interactive and processing in real time Technologies
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Chromatin Contact networks

Promoter Capture HiC data for haematopoietic cells in human. Javierre etal. 2016

Promoter Capture HiC data for mouse embryonic stem cells Schoenfelderet al. 2015
Features

Mouse embryonic stem cells histone modifications and 78 ChlP-Seq datasets. Juanetal. 2016
GeneExp from Finotelloetal. 2019

GeneExpEPIVAR for Monocytes, Neutrophils and Tcells from Chenetal. 2016

Human Histone modification data: EPIVAR from Chenet al. 2016

Human Replication Timing data (GM12878). Pope et al. 2014

PCHIiC data processed with CHICAGO. Cairmnsetal. 2016

Technical details at https:/github.com/VeraPancaldiLab/GARDEN-NET

Madrid*, Raineri* and Pancaldi, 2019 GARDEN-NET and ChAseR: a suite of tools for the analysis of chromatin networks
BioRxiv 717298, (submitted)



ChAseR: an R package (C C RCT
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https//bitbucket.org/eraineri/chaser/

make_chromnet()
From file

From DataFrame
With/out features

ﬂoad_features()

1) Combine values matching to a node with a chosen function

type=‘.bed6’, ‘features_table’

2) Calculate proportion of overlap of feature with node

type = ‘.bed3’, *.MACS2’

3) Feature created from chromatin state

type="chromhmm’

4) Assign feature already measured on node
Qypeffeatures_on_node’

e subset_chromnet()

by chromosome,
by distance 1d/3d
by interaction type export()
randomize(n=...) features
nodes
chas() preserve.nodes

dist.match baits
edges
scatterplot

type= ‘categorical’
type=‘corr_fun’
type=‘crosschas’
type="moran’

Madrid*, Raineri* and Pancaldi, 2019 GARDEN-NET and ChAseR: a suite of tools for the analysis of chromatin networks
BioRxiv 717298, (in revision)



Mammalian DNA replication in 3D @ CrCT

Stochastic firing model: constitutive, flexible, dormant origins
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Fragkos et al. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 2015
Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 2010




A global view of replication in 3D in mouse
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Perspectives



Chromatin, heterogeneity, plasticity, stemne@@. ¢!

Chromatin state (methylation/histone modifications etc...) can affect
* Plasticity (rapidly regulated stress genes)

* Single cell heterogeneity (noisy promoters)

* Inter-individual differences

* Evolutionary divergence speed
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A systems approach @ R

Thermodynamics: from particles’ positions and velocities to pressure and temperature

A Random network B Scale-free network C Hierarchical network
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Network theory: from nodes and edges to degree distribution, clustering coefficient, ...

Interdisciplinary approach: borrow concepts from studies on other networks



Cellular differentiation and response @ T
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Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation Lépez-Maury L et al. Nat. Rev. Gen. 2008.
Pancaldi V, Schubert F and Bahler J. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic
perturbations in fission yeast. Mol. BioSyst., 2010.

Stress induces remodelling of yeast interaction and co-expression networks Lehtinen S, Marsellach FX, Codlin S, Schmidt A, Clément-Ziza M, Beyer A,
Bahler J, Orengo C, Pancaldi V. Mol. BioSyst., 2013.

System level Stress Response
Network disaggregates into modules
Increase in heterogeneity
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