Efficient processing of Hi-C data and application to cancer

Nicolas Servant, PhD

Institut Curie, INSERM U900, Mines ParisTech, PSL-Research University

04th of Decembre 2019 Hi-C days, Toulouse

Institut national de la santé et de la recherche médicale

Spatial organization of the genome

Different levels of spatial organization

Hi-C captures the chromatin conformation within the nucleus

Genome organization and Hi-C

Lieberman-Aiden et al. 2009, Dixon et al. 2012, Rao et al. 2014

Genome organization and Hi-C

Topological Associated domains (TADs)

The topological domains (TADs) have been described as the functional units of the genome organization, able to promote enhancer/promoter interactions.

'Hi-C'-based experiments

Method	Main features	References
Hi-C	For mapping whole-genome chromatin interaction in a cell population; proximity ligation is carried out in a large volume	Lieberman-Aiden et al. (2009)
TCC	Similar to Hi-C, except that proximity ligation is carried out on a solid phase-immobilized proteins	Kalhor et al. (2011)
Single-cell Hi-C	For mapping chromatin interactions at the single-cell level	Nagano et al. (2013)
In situ Hi-C	Proximity ligation is carried out in the intact nucleus	Rao et al. (2014)
Capture-C	Combines 3C with a DNA capture technology ; equivalent to high-throughput 4C	Hughes et al. (2014)
Dnase Hi-C	Chromatin is fragmented with Dnase I; proximity ligation is Ma et al. (2015) carried out on a solid gel	
Targeted Dnase Hi-C	Combine Dnase or in situ Dnase Hi-C with a capture technology	Ma et al. (2015)
Micro-C	Chromatin is fragmented with micrococcal nuclease	Hsiech et al. (2015)
In situ DNAse Hi-C	n situ DNAse Hi-C Chromatin is fragmented with Dnase I; proximity logation is Deng et al. (20 carried out in the intact nucleus	
Capture-Hi-C	Ii-CCombines 3C with a DNA capture technology ; equivalent toMifsud et al. (2015)high-throughput 5C	
HiChIP	HiChIPDetecting genome-wide chromatin interaction mediated by a particular protein ; equivalent to ChAI-PETMumbach et al	

Ready-to-use Hi-C Kits

https://www.qiagen.com

https://arimagenomics.com/kit

PROXIMO HI-C KIT (MICROBE)

Protocol | SDS

PROXIMO HI-C KIT (ANIMAL)

Protocol | SDS

PROXIMO HI-C KIT (PLANT) Protocol | SDS

PROXIMO HI-C KIT (HUMAN) Protocol | SDS

https://www.phasegenomics.com

Which approach for which purpose?

Nat Genet. 2019 Jun;51(6):1024-1034. doi: 10.1038/s41588-019-0412-0. Epub 2019 May 27.

The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist.

van Bemmel JG^{1,2,3}, Galupa R^{4,5}, Gard C⁴, Servant N^{6,7}, Picard C⁴, Davies J⁸, Szempruch AJ⁹, Zhan Y^{10,11}, Żylicz JJ^{4,12}, Nora EP¹³, Lameiras S¹⁴, de Wit E¹⁵, Gentien D¹⁶, Baulande S¹⁴, Giorgetti L¹⁰, Guttman M⁹, Hughes JR⁸, Higgs DR⁸, Gribnau J¹⁷, Heard E¹⁸.

Author information

Which approach for which purpose?

Capture Hi-C protocol (Franck et al. 2016)

i.e. Hi-C library combined with capture of a dedicated genomic region

Questions?

- 1. How to efficiently process Hi-C data?
- 2. Are there any specific computational challenges in analyzing Hi-C data from cancer samples ?

What does Hi-C data look like ?

Challenges in Hi-C data processing

How to process Hi-C data in an **easy** and **efficient** way taking into account ;

- The huge amount of data
- The evolution of protocols
- The computational ressources

Reads mapping strategy

Detection of valid interaction products

• etc.

Building contact maps

There is currently no consensus about how to (efficiently) store the contact maps

A Hi-C contact map is :

- Usually very sparse
- Symmetric

We therefore propose to use a standard triplet sparse format to store only half of the non-zero contact values.

	Dense (MB)	Sparse Complete (MB)	Sparse Symmetric (MB)
1M	25	98	49
500Kb	77	363	182
150Kb	818	1 900	934
40Kb	12 000	3 800	1 900
20Kb	45 000	5 300	2 700
5Kb	>100 000 ??	8 600	4 300

Hi-C formats

.hic files (Juicer, Juicebox)

- Contact matrices in multiple resolutions and summary statistics stored in one file
- Java and C bindings
- Command line tools
- Extant suite of analysis tools
- Extant visualization tool.

.cool files (cooler, higlass)

- Flexibility to store one or multiple matrices with varying bin sizes
- python library
- Command line tools
- HDF5, which has native bindings in practically all languages
- out of memory iterative matrix balancing, that can work on very large matrices.

Hi-C data normalization

All high-throughhut techniques are subject to technical and experimental biases

The iterative correction (ICE) method is **a widely used** approach for Hi-C data normalization.

This method is based on the assumption that **each locus should have the same probability of interaction genome-wide**, and is in theory able to correct for **any bias** in the contact maps.

Iterative correction of Hi-C data reveals hallmarks of chromosome organization

Maxim Imakaev^{1,5}, Geoffrey Fudenberg^{2,5}, Rachel Patton McCord³, Natalia Naumova³, Anton Goloborodko¹, Bryan R Lajoie³, Job Dekker³ & Leonid A Mirny^{1,2,4}

HiC-Pro – processing of Hi-C/HiChiP data

- Easy-to-use
- Optimized and scalable
- Flexible
- Support most protocols
- Open to contribution
- Compatible with many downstream analysis software

Highly used in the last years

Available at <u>https://github.com/nservant/HiC-Pro</u> Forum and discussion at <u>https://groups.google.com/forum/#!forum/hic-pro</u>

- Total citations
 Recent citations
- 149 Field Citation Ratio7.48 Relative Citation Ratio

Building Efficient and Reproducible Workflows

For facilities

Highly optimised pipelines with excellent reporting. Validated releases ensure reproducibility.

For users

Portable, documented and easy to use workflows. Pipelines that you can trust.

For developers

Companion templates and tools help to validate your code and simplify common tasks.

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Analysis pipelines:

- Nextflow-based pipelines
- High level of reproducibily
- Strict Guidelines
- 17 released pipelines
- 19 under development

Community: 29 organisations over the world More than 90 contributors

Analysis of Chromosome Conformation Capture data (Hi-C).

build passing nextflow ≥19.04.0

install with bioconda docker build manual singularity available

DOI 10.5281/zenodo.2669513

Introduction

This pipeline is based on the HiC-Pro workflow. It was designed to process Hi-C data from raw fastq files (paired-end Illumina data) to normalized contact maps. The current version supports most protocols, including digestion protocols as well as protocols that do not require restriction enzymes such as DNase Hi-C. In practice, this workflow was successfully applied to many data-sets including dilution Hi-C, in situ Hi-C, DNase Hi-C, Micro-C, capture-C, capture Hi-C or HiChip data.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.

First version of nf-core Hi-C pipeline released !

V1.1.0 = Nextflow HiC-Pro version

- Automatic installation
- Natively support most schedulers
- Natively compatible with conda, docker, singularity
- Efficient tasks management
- Reads can be automaticaly splitted by chuncks to speed the processing

nf-core/ 🗊 hic

Analysis of Chromosome Conformation Capture data (Hi-C).

Plans for the next versions :

- TADs calling (which methods ?)
- Compartment Calling
- Detection of significant contacts
- Specific pipelines for Hi-C based assembly ? Cancer Hi-C ?

Contribution is welcome !

Questions?

- 1. How to efficiently process Hi-C data?
- 2. Are there any specific computational challenges in analyzing Hi-C data from cancer samples ?

Hi-C on cancer data

So far, most of the studies were dedicated to normal cell ... and a few ones started to investigate chromatin structure of Breast and Prostate cancer using Hi-C

Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation

François Le Dily,^{1,2,3} Davide Baù,^{1,3} Andy Pohl,^{1,2} Guillermo P. Vicent,^{1,2} Françoi Daniel Soronellas,^{1,2} Giancarlo Castellano,^{1,2,4} Roni H.G. Wright,^{1,2} Cecilia Ballan Guillaume Filion,^{1,2} Marc A. Marti-Renom,^{1,3,5} and Miguel Beato^{1,2}

¹Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulació Genòmica (CRG), 08003 Barco

Pom Barucu et al. Genome Biology (2015) 16:214 DOI 10.1186/s13059-015-0768-0

0

Three-dimensional disorganisation of the cancer genome occurs coincident with long range genetic and epigenetic alterations.

Phillippa C. Taberlay^{1,2,#}, Joanna Achinger-Kawecka^{1,2,#}, Aaron T.L. Lun^{4,5}, Fabian A. Buske¹, Kenneth Sabir¹, Cathryn M. Gould¹, Elena Zotenko^{1,2}, Saul A. Bert¹, Katherine A. Giles¹, Denis C. Bauer³, Gordon K. Smyth^{4,6}, Clare Stirzaker^{1,2}, Sean I. O'Donoghue^{1,3}, Susan J. Clark^{1,2,*}

RESEARCH

Chromatin interaction analysis reveals changes CrossMark in small chromosome and telomere clustering between epithelial and breast cancer cells

A. Rasim Barutcu¹, Bryan R. Lajoie², Rachel P. McCord², Coralee E. Tye⁵, Deli Hong^{1,5}, Terri L. Messier⁵, Gillian Browne⁵, Andre J. van Wijnen⁴, Jane B. Lian⁵, Janet L. Stein⁵, Job Dekker^{2,3}, Anthony N. Imbalzano¹ and Gary S. Stein^{5*}

Alterations in cancer (epi)genomics

TADs are biologically relevant

- TADs disruption leads to new enhancer/promoter contacts
- Abnormal enhancer/promoter contacts can have strong phenotypic impacts
- Structural variants can disrupt TADs structure

Organization of cancer genomes?

Valton & Dekker, 2016

Hi-C, a good tool to study CNVs?

Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours

Louise Harewood 🖾 , Kamal Kishore , Matthew D. Eldridge , Steven Wingett , Danita Pearson ,

Genome Biology 2017 18:125

Method Open Access

https://doi.org/10.1186/s13059-017-1253-8 © The Received: 9 December 2016 Accepted: 8 June 2017

Fig. 3 Tumour GB176. a Heatmap and partial heatmaps of tumour GB176 showing some of the rearrangements present in this tumour. b Hi-C 'other ends' from regions distal and proximal to the suspected breakpoint on chromosome 1 (top) and chromosome 20 (bottom) showing the breakpoint regions. A sudden drop-off in the number of reads can be seen where the remaining chromosome is not involved in the translocation and is therefore not in cis. c Left: Polymerase chain reaction (PCR) on tumour and blood DNA from GB176 showing amplification products from both derivative chromosomes, indicating a balanced translocation. Right: BLAT results from sequenced tumour specific PCR amplicons showing the breakpoint regions on chromosome 1 (top) and 20 (bottom). The gaps in the BLAT results show deletions at the translocation breakpoints

Challenges in Hi-C cancer data?

Impacts?

Hi-C – What do we count?

In the context of a diploid genome

If *i* and *j* belong to the same chromosome $C_{ij}=2 \ cis + 2 \ transH$

If *i* and *j* belong to different chromosomes $C_{ij} = 4 \text{ trans}$

Generalization to polyploid genomes

$$\begin{split} \mathbf{N}_{i} &= \mathbf{N}_{j} \\ \text{If chr}_{i} &= \text{chr}_{j}, \ \mathbf{C}_{ij} &= \mathbf{N}_{i} \ \mathbf{cis} + \mathbf{N}_{i} \ (\mathbf{N}_{j} - 1) \ transH \\ \text{If chr}_{i} &\neq \text{chr}_{j}, \ \mathbf{C}_{ij} &= \mathbf{N}_{i} \mathbf{N}_{j} \ trans \end{split}$$

Extension to Cancer genome

If *i* and *j* belong to the same chromosomal segment

 $C_{ij} = N_i cis + N_i (N_j - 1) transH$

Extension to Cancer genome

 $C_{ii} = 2 \operatorname{cis} + (2x4 + 5) \operatorname{transH}$

If *i* and *j* belong to different chromosomal segments

C_{ij} = p cis + (N_i * N_j - p) * transH
where p is the number of complete chromosomes

Simulation of cancer Hi-C data

1. Estimate the *cis_{ii}* and transH terms from a real diploid Hi-C dataset.

Estimate *transH* under the assumption that the contact probability between homologuous chromosomes can be estimated using the observed trans contact between different chromosomes.

For each interaction C_{ij} , between the loci *i* and *j*, estimate the *cis* value using $C_{ij} = 2 cis_{ij} + 2 transH$

2. Simulate the effect of CNVs on the contact matrix

Given the *cis* and *transH* values for two loci *i* and *j*, calculate E_{ij} , the expected counts in the presence of CNVs

Calculate the expected factor of enrichment/depletion of interactions for the loci i and j matrix: $p_{ij} = E_{ij} / C_{ij}$

Estimate the simulated data using a binomial downsampling of parameter $C_{ij}^{T} \sim B(C_{ij}, p_{ij})$

Simulation - Results

How to validate the simulation model?

In order to validate our simulation model, we used Hi-C from MCF10 normal-like data, from which we simulated the MCF7 CNV profile

Simulation - Validation

Effect of ICE normalization

The iterative correction (ICE) **does not** correct for CNV bias.

ЫG

Effect of ICE normalization

The iterative correction (ICE) **does no**t correct for CNV bias. More importantly, it leads to an inversion of the signal in cis.

RAW

ЫG

How to normalize cancer Hi-C data?

How to take into account the CNV signal into the normalization ?

- 1. Correct for systematic bias but not for the CNVs signal, which can be useful for biological interpretation of cancer, for 3D modeling, genome reconstruction, contribution to CNVs to disease, *etc*.
- 2. Correct for all bias including the CNVs because it migth introduce a bias in my downstream analysis (differential contacts, detection of chromosome compartments, *etc*.)

Estimation of DNA breakpoints from Hi-C data

The segmentation of 1D Hi-C profile is performed as follow :

- 1. Generate the 1D Hi-C profile as the sum of contact per locus genome-wide
- 2. Remove systematic biases using a Poisson regression model
- 3. Segment the profile

Validation on 100 simulated data-sets : 91% recall / 62.4% precision

CNV-based normalization of Hi-C cancer data

The Local Iterative correction (LOIC) normalization method extends the ICE model, making the assumption of local equal visibility per genomic segment

CNV-based normalization of Hi-C cancer data

The Local Iterative correction (LOIC) normalization method extends the ICE model, making the assumption of local equal visibility per genomic segment

Removing CNVs from cancer Hi-C data

We assume that the copy number bias is constant per block and that the contact counts at a given genomic distance should be the same regardless the copy number status.

- 1- Run the ICE normalization
- 2- Estimate the average **counts** ~ **distance** signal on the genome-wide matrix

3- Based on the segmentation profile, rescale the counts ~ distance fit for each segmentation block

Removing CNVs from cancer Hi-C data

Cancer Hi-C data normalization

METHODOLOGY ARTICLE

Open Access

Effective normalization for copy number variation in Hi-C data

Nicolas Servant^{1,2,3*†} (D), Nelle Varoquaux^{4,5†}, Edith Heard⁶, Emmanuel Barillot^{1,2,3} and Jean-Philippe Vert^{3,1,2,7}

- CNVs estimation from Hi-C data
- Cancer Hi-C data simulation
- Normalization of Hi-C cancer data

Available at https://github.com/nservant/cancer-hic-norm/

Normalization methods are included into the *iced* python module and available at <u>https://github.com/hiclib/iced</u>

How useful is the LOIC method?

Formation of new chromatin domains determines pathogenicity of genomic duplications

Martin Franke^{1,2}*, Daniel M. Ibrahim^{1,2,3}*, Guillaume Andrey¹, Wibke Schwarzer⁴, Verena Heinrich^{2,5}, Robert Schöpflin⁵, Katerina Kraft^{1,2}, Rieke Kempfer¹, Ivana Jerković^{1,2}, Wing–Lee Chan², Malte Spielmann^{1,2}, Bernd Timmermann⁶, Lars Wittler⁷, Ingo Kurth^{8,9}, Paola Cambiaso¹⁰, Orsetta Zuffardi¹¹, Gunnar Houge¹², Lindsay Lambie¹³, Francesco Brancati^{14,15}, Ana Pombo^{3,16}, Martin Vingron⁵, Francois Spitz⁴ & Stefan Mundlos^{1,2,3,17}

How useful is the LOIC method?

Going further with downstream analysis

The detection of A/B chromosome compartments is usually based on PCA analysis of the intra-chromosomal maps correlation.

The methods is surprisingly robust to CNV variations

But for some chromosomes, the PC1 signal is biased toward the CNV profile

Removing CNVs from cancer Hi-C data

Detection of A/B chromosome compartments

Take Home Messages

HiC-Pro available at <u>https://github.com/nservant/HiC-Pro</u> nf-core-hic is available at <u>https://github.com/nf-core/hic</u>

Both are collaborative projects, so do not hesitate to propose improvments or to report errors

In a copy number context, we demonstrate that the ICE normalization does not allow to correct for these effects and that it results in a shift in contact probabilities between altered regions in cis

We proposed a first simulation model to investigate the CNVs impact on Hi-C map

We then proposed two new methods for Cancer Hi-C data and applied it to different case studies

- LOIC to keep the CNVs information
- CAIC to remove the CNVs

Many Thanks

Nelle Varoquaux, PhD

Agathe Neviere Jean-Philippe Vert, PhD Emmanuel Barillot, PhD

Edith Heard, PhD Joke van Bemmel , PhD Rafael Galupa , PhD Agnese Loda , PhD Elphege Nora , PhD

Institut national de la santé et de la recherche médicale

