Co-expression analysis of RNA-seq data

Etienne Delannoy & Marie-Laure Martin-Magniette & Andrea Rau

Plant Science Institut of Paris-Saclay (IPS2) Applied Mathematics and Informatics Unit (MIA-Paris) Genetique Animale et Biologie Integrative (GABI)

Outline

- Co-expression analysis introduction
- Unsupervised clustering
 - Centroid-based clustering: K-means, HCA
 - Model-based clustering
 - Mixture models for RNA-seq data
- 3 Conclusion / discussion

Aims for this talk

- What is the biological/statistical meaning of co-expression for RNA-seq?
- What methods exist for performing co-expression analysis?
- How to choose the number of clusters present in data?
- Advantages / disadvantages of different approaches: speed, stability, robustness, interpretability, model selection, ...

Design of a transcriptomics project

Gene co-expression¹

¹Google image search: "Coexpression"

Gene co-expression is...

- The simultaneous expression of two or more genes²
- Groups of co-transcribed genes³
- Similarity of expression⁴ (correlation, topological overlap, mutual information, ...)
- Groups of genes that have similar expression patterns⁵ over a range of different experiments

²https://en.wiktionary.org/wiki/coexpression

³http://bioinfow.dep.usal.es/coexpression

⁴http://coxpresdb.jp/overview.shtml

⁵Yeung et al. (2001)

⁶Eisen *et al.* (1998)

Gene co-expression is...

- The simultaneous expression of two or more genes²
- Groups of co-transcribed genes³
- Similarity of expression⁴ (correlation, topological overlap, mutual information, ...)
- Groups of genes that have similar expression patterns⁵ over a range of different experiments
- Related to shared regulatory inputs, functional pathways, and biological process(es)⁶

²https://en.wiktionary.org/wiki/coexpression

³http://bioinfow.dep.usal.es/coexpression

⁴http://coxpresdb.jp/overview.shtml

⁵Yeung et al. (2001)

⁶Eisen *et al.* (1998)

From co-expression to gene function prediction

- Transcriptomic data: main source of 'omic information available for living organisms
 - Microarrays (~1995)
 - High-throughput sequencing: RNA-seq (~2008)

Co-expression (clustering) analysis

- Study patterns of relative gene expression (profiles) across several conditions
- Co-expression is a tool to study genes without known or predicted function (orphan genes)
- Exploratory tool to identify expression trends from the data
 (≠ sample classification, identification of differential expression)

- Let y_{ij} be the raw count for gene i in sample j, with library size s_j
- Profile for gene i: $p_{ij} = \frac{y_{ij}}{\sum_{\ell} y_{i\ell}}$

• Normalized profile for gene i: $p_{ij} = \frac{y_{ij}/s_j}{\sum_{\ell} y_{i\ell}/s_j}$

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from transcriptomic data

What does it mean for a pair of genes to be close? Given this, how do we define groups?

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from transcriptomic data

What does it mean for a pair of genes to be close? Given this, how do we define groups?

Two broad classes of methods typically used:

- Centroid-based clustering (K-means and hierarchical clustering)
- Model-based clustering (mixture models)

Similarity measures

Similarity between genes is defined with a distance:

• Euclidian distance (L2 norm): $d^2(\mathbf{y}_i, \mathbf{y}_{i'}) = \sum_{\ell=1}^{p} (y_{i\ell} - y_{i'\ell})^2$ \Rightarrow Note: sensitive to scaling and differences in average expression level

Similarity measures

Similarity between genes is defined with a distance:

- Euclidian distance (L2 norm): $d^2(\mathbf{y}_i, \mathbf{y}_{i'}) = \sum_{\ell=1}^{p} (y_{i\ell} y_{i'\ell})^2$ \Rightarrow Note: sensitive to scaling and differences in average expression level
- Pearson correlation coefficient: $d_{pc}(\mathbf{y}_i, \mathbf{y}_{i'}) = 1 \rho_{i,i'}$
- Spearman rank correlation coefficient: as above but replace y_{ij} with rank of gene g across all samples j
- Absolute or squared correlation: $d_{ac}(\mathbf{y}_i, \mathbf{y}_{i'}) = 1 |\rho_{i,i'}|$ or $d_{sc}(\mathbf{y}_i, \mathbf{y}_{i'}) = 1 \rho_{i,i'}^2$
- Manhattan distance: $d_{\text{Manhattan}}(\mathbf{y}_i, \mathbf{y}_{i'}) = \sum_{\ell=1} |y_{i\ell} y_{i'\ell}|$

Inertia measures

Homogeneity of a group is defined with an inertia criterion:

• Let \mathbf{y}_D be the centroid of the dataset and \mathbf{y}_{C_k} the centroid of group C_k

Inertia =
$$\sum_{g=1}^{G} d^2(\mathbf{y}_i, \mathbf{y}_D)$$
=
$$\sum_{k=1}^{K} \sum_{g \in C_k} d^2(\mathbf{y}_i, \mathbf{y}_{C_k}) + \sum_{k=1}^{K} n_k d^2(\mathbf{y}_{C_k}, \mathbf{y}_D)$$

= within-group inertia + between-group inertia

In practice...

Objective: cluster *G* genes into *K* groups, maximizing the between-group inertia

- Exhaustive search is impossible
- Two algorithms are often used
 - K-means
 - Hierarchical clustering

K-means algorithm

Initialization K centroids are chosen ramdomly or by the user

Iterative algorithm

- Assignment Each gene is assigned to a group according to its distance to the centroids.
- Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived OR when groups are stable

Properties

- Rapid and easy
- Results depend strongly on initialization
- Number of groups K is fixed a priori

K-means illustration

Animation: http://shabal.in/visuals/kmeans/1.html

K-means algorithm: Choice of K?

 Elbow plot of within-sum of squares: examine the percentage of variance explained as a function of the number of clusters

- Gap statistic: estimate change in within-cluster dispersion compared to that under expected reference null distribution
- Silhouette statistic: measure of how closely data within a cluster is matched and how loosely it is matched to neighboring clusters

Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of $(G, G-1, \ldots, 1)$ groups, forming a tree-shaped data structure (dendrogram)

Algorithm

- Initialization G groups for G genes
- At each step:
 - Closest genes are clustered
 - Calculate distance between this new group and the remaining genes

Distances between groups for HCA

Distances between groups

Single-linkage clustering:

$$D(C_k, C_{k'}) = \min_{y \in C_k} \min_{y' \in C_{k'}} d^2(y, y')$$

Complete-linkage clustering:

$$D(C_k, C_{k'}) = \max_{y \in C_k} \max_{y' \in C_{k'}} d^2(y, y')$$

Ward distance:

$$D(C_k, C_{k'}) = d^2(y_{C_k}, y_{C_{k'}}) \times \frac{n_k \ n_{k'}}{n_k + n_{k'}}$$

where n_k is the number of genes in group C_k

Distances between groups for HCA

Source: http://compbio.pbworks.com/w/page/16252903/Microarray%20Clustering%20Methods%20and%20Gene%20Ontology

HCA: additional details

Properties:

- HCA is stable since there is no initialization step
- K is chosen according to the tree
- Results strongly depend on the chosen distances
- Branch lengths are proportional to the percentage of inertia loss
 a long branch indicates that the 2 groups are not homogeneous

Model-based clustering

- Probabilistic clustering models: data are assumed to come from distinct subpopulations, each modeled separately
- Rigourous framework for parameter estimation and model selection
- Output: each gene assigned a probability of cluster membership

what we observe

$$Z = ?$$

the model

the expected results

$$Z: 1 = •, 2 = •, 3 = •$$

Key ingredients of a mixture model

- Let $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ denote the observations with $\mathbf{y}_i \in \mathbb{R}^Q$
- We introduce a latent variable to indicate the group from which each observation arises:

$$Z_i \sim \mathcal{M}(n; \pi_1, \dots, \pi_K),$$

 $P(Z_i = k) = \pi_k$

- Assume that \mathbf{y}_i are conditionally independent given Z_i
- Model the distribution of $\mathbf{y}_i | Z_i$ using a parametric distribution:

Questions around the mixtures

- Model: what distribution to use for each component ?
 - → depends on the observed data.
- Inference: how to estimate the parameters?
 - → usually done with an EM-like algorithm (Dempster et al., 1977)
- Model selection: how to choose the number of components?
 - A collection of mixtures with a varying number of components is usually considered
 - A penalized criterion is used to select the best model from the collection

Clustering data into components

Distributions:

$$g(x) = \pi_1 f_1(x) + \pi_2 f_2(x) + \pi_3 f_3(x)$$

Conditional probabilities:

$$\tau_{ik} = \frac{\pi_k f_k(x_i)}{g(x_i)}$$

Maximum a posteriori (MAP) rule: Assign genes to the component with highest conditional probability τ_{ik} :

$ au_{ik}$ (%)	<i>k</i> = 1	<i>k</i> = 2	k = 3
<i>i</i> = 1	65.8	34.2	0.0
i = 2	0.7	47.8	51.5
i = 3	0.0	0.0	100

. . .

Model selection for mixture models

Asymptotic penalized criteria⁷

 BIC aims to identify the best model K wrt the global fit of the data distribution:

$$BIC(K) = -\log P(\mathbf{y}|K, \hat{\theta}_K) + \frac{\nu_K}{2}\log(n)$$

where ν_K is the # of free parameters and $\hat{\theta}_K$ is the MLE of the model with K clusters

• ICL aims to identify the best model *K* wrt cluster separation:

$$ICL(K) = BIC(K) + \left(-\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik} \log \tau_{ik}\right)$$

Select K that minimizes BIC or ICL (but be careful about their sign!)

⁷Asymptotic: approaching a given value as the number of observations $n \to \infty$

Model selection for mixture models: BIC vs ICL

Model selection for mixture models

Non-asymptotic penalized criteria

Recent work has been done in a non-asymptotic context using the slope heuristics (Birgé & Massart, 2007):

$$SH(K) = \log P(\mathbf{y}|K, \hat{\theta}_K) + \kappa \text{pen}_{shape}(K)$$

- In large dimensions, linear behavior of $\frac{D}{n} \mapsto -\gamma_n(\hat{s}_D)$
- Estimation of slope to calibrate $\hat{\kappa}$ in a data-driven manner (Data-Driven Slope Estimation = DDSE), capushe R package

Finite mixture models for RNA-seq

Assume data \mathbf{y} come from K distinct subpopulations, each modeled separately:

$$f(\mathbf{y}|K, \Psi_K) = \prod_{i=1}^n \sum_{k=1}^K \pi_k f_k(\mathbf{y}_i; \boldsymbol{\theta}_k)$$

- $\pi = (\pi_1, \dots, \pi_K)'$ are the mixing proportions, where $\sum_{k=1}^K \pi_k = 1$
- f_k are the densities of each of the components

Finite mixture models for RNA-seq

Assume data \mathbf{y} come from K distinct subpopulations, each modeled separately:

$$f(\mathbf{y}|K, \Psi_K) = \prod_{i=1}^n \sum_{k=1}^K \pi_k f_k(\mathbf{y}_i; \boldsymbol{\theta}_k)$$

- $\pi = (\pi_1, \dots, \pi_K)'$ are the mixing proportions, where $\sum_{k=1}^K \pi_k = 1$
- f_k are the densities of each of the components
- For microarray data, we often assume $\mathbf{y}_i | k \sim \mathsf{MVN}(\mu_k, \Sigma_k)$
- What about RNA-seq data?

Finite mixture models for RNA-seq data

$$f(\mathbf{y}|K, \Psi_K) = \prod_{i=1}^n \sum_{k=1}^K \pi_k \mathbf{f}_k(\mathbf{y}_i | \boldsymbol{\theta}_k)$$

For RNA-seq data, we must choose the family & parameterization of $f_k(\cdot)$:

Directly model read counts (HTSCluster):

$$\mathbf{y}_i|\mathcal{Z}_i = k \sim \prod_{j=1}^J \mathsf{Poisson}(y_{ij}|\mu_{ijk})$$

Apply appropriately chosen data transformation (coseq):

$$g(\mathbf{y}_i)|Z_i = k \sim \mathsf{MVN}(\mu_k, \Sigma_k)$$

Poisson mixture models for RNA-seq (Rau et al., 2015)

$$\mathbf{y}_i|Z_i=k\sim\prod_{j=1}^J \mathsf{Poisson}(y_{ij}|\mu_{ijk})$$

Question: How to parameterize the mean μ_{ijk} to obtain meaningful clusters of co-expressed genes?

Poisson mixture models for RNA-seq (Rau et al., 2015)

$$\mathbf{y}_i|Z_i=k\sim\prod_{j=1}^J \mathsf{Poisson}(y_{ij}|\mu_{ijk})$$

Question: How to parameterize the mean μ_{ijk} to obtain meaningful clusters of co-expressed genes?

$$\mu_{ijk} = \mathbf{w}_i \lambda_{jk} \mathbf{s}_j$$

- w_i : overall expression level of observation $i(y_i)$
- $\lambda_k = (\lambda_{jk})$: clustering parameters that define the profiles of genes in cluster k (variation around w_i)
- s_j : normalized library size for sample j, where $\sum_j s_j = 1$

Behavior of model selection in practice for RNA-seq

Discussion of PMM for RNA-seq data

Advantages:

- Directly models counts (no data transformation necessary)
- Clusters interpreted in terms of profiles around mean expression
- Implemented in HTSCluster package on CRAN (v1.0.8)
- Promising results on real data...

Discussion of PMM for RNA-seq data

Advantages:

- Directly models counts (no data transformation necessary)
- Clusters interpreted in terms of profiles around mean expression
- Implemented in HTSCluster package on CRAN (v1.0.8)
- Promising results on real data...

Limitations:

- Slope heuristics requires a very large collection of models to be fit
- Restrictive assumption of conditional independence among samples
- Oannot model per-cluster correlation structures
- Poisson distribution requires assuming that mean = variance

Correlation structures in RNA-seq data

Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets

Gaussian mixture models for RNA-seq

Idea: Transform RNA-seq data, then apply Gaussian mixture models

Several data transformations have been proposed for RNA-seq to render the data approximately homoskedastic:

- $\log_2(y_{ij} + c)$
- Variance stabilizing transformation (DESeq)
- Moderated log counts per million (edgeR)
- Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles

$$p_{ij} = rac{y_{ij}/s_j}{\sum_\ell y_{i\ell}/s_j}$$

Remark: transformation needed for normalized profiles

- Note that the normalized profiles are *compositional data*, i.e. the sum for each gene $p_{i.} = 1$
- This implies that the vector \mathbf{p}_i is linearly dependent \Rightarrow imposes constraints on the covariance matrices Σ_k that are problematic for the general GMM
- As such, we consider a transformation on the normalized profiles to break the sum constraint:

$$ilde{
ho}_{ij} = g(
ho_{ij}) = rcsin\left(\sqrt{
ho_{ij}}
ight)$$

And fit a GMM to the transformed normalized profiles:

$$f(\tilde{\mathbf{p}}|K,\Psi_K) = \prod_{i=1}^n \sum_{k=1}^K \pi_k \phi(\tilde{\mathbf{p}}_i | \boldsymbol{\theta}_k, \boldsymbol{\Sigma}_k)$$

Running the PMM or GMM for RNA-seq data with coseq

```
> library(coseq)
>
  GMM <- coseq(counts, K=2:10, model="Normal",
               transformation="arcsin")
>
> summary(GMM)
> plot (GMM)
>
> ## Note: indirectly calls HTSCluster for PMM
> PMM <- coseq(counts, K=2:10, model="Poisson",
               transformation="none")
>
> summary (PMM)
> plot(PMM)
```

Examining GMM results

Examining GMM results

Examining GMM results

Evaluation of clustering quality

Evaluation of clustering quality

Evaluation of clustering quality

Conclusions: RNA-seq co-expression

Some practical questions to consider prior to co-expression analyses:

- Should all genes be included?
 Screening via differential analysis or a filtering step (based on mean expression or coefficient of variation)...
 - → Usually a good idea, genes that contribute noise will affect results!
- What to do about replicates?
 - Average, or model each one independently?
 - Note that the PMM makes use of experimental condition labels, but the GMM does not...

A note about evaluating clustering approaches⁸

- Clustering results can be evaluated based on internal criteria (e.g., statistical properties of clusters) or external criteria (e.g., functional annotations)
- Preprocessing details (normalization, filtering, dealing with missing values) can affect clustering outcome
- Methods that give different results depending on the initialization should be rerun multiple times to check for stability
- Most clustering methods will find clusters even when no actual structure is present ⇒ good idea to compare to results with randomized data!

⁸D'haeseller, 2005

A note about validating clustering approaches on real data

- Difficult to compare several clustering algorithms on a given dataset (and difficult to discern under which circumstances a particular method should be preferred)
 - Adjusted Rand index: measure of similarity between two data clusterings, adjusted for the chance grouping of elements
 ARI has expected value of 0 in the case of a random partition, and is bounded above by 1 in the case of perfect agreement

A note about validating clustering approaches on real data

- Difficult to compare several clustering algorithms on a given dataset (and difficult to discern under which circumstances a particular method should be preferred)
 - Adjusted Rand index: measure of similarity between two data clusterings, adjusted for the chance grouping of elements
 ARI has expected value of 0 in the case of a random partition, and is bounded above by 1 in the case of perfect agreement
- Difficult to evaluate how well a given clustering algorithm performs on transcriptomic data
- No one-size-fits-all solution to clustering, and no consensus of what a "good" clustering looks like ⇒ use more than one clustering algorithm!

Final thoughts⁹

There is no single best criterion for obtaining a partition because no precise and workable definition of *cluster* exists. Clusters can be of any arbitrary shapes and sizes in a multidimensional pattern space. Each clustering criterion imposes a certain structure on the data, and if the data happen to conform to the requirements of a particular criterion, the true clusters are recovered.

Acknowledgements & References

MixStatSeq ANR-JCJC grant

Thanks to Gilles Celeux (Inria Saclay - Île-de-France), Cathy Maugis-Rabusseau (INSA / IMT Toulouse), Etienne Delannoy, Marie-Laure Martin-Magniette (SPS), and Panos Papastamoulis (University of Manchester)

Jain & Dubes (1988) Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River, NJ.
D'haeseller (2005) How does gene expression clustering work? Nature Biotechnology, 23(12):1499-501.
Yeung et al. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17(10):977-87.
Eisen et al. (1998) Cluster analysis and display of genome-wide expression patterns. PNAS, 95(25):14863-8.
Dempster et al. (1977) Maximum likelihood from incomplete data via the EM algorithm. JRSS B, 39(1):1-38.
Birgé & Massart (2007) Minimal penalties for Gaussian model selection. Probability Theory and Related Fields 138(1):33-73.

Rau al. (2015) Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics 31(9):1420-7.

