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What are networks/graphs?

What is a graph? graphe
Mathematical object used to model relational data between entities.

A relation between two entities is modeled by an edge
arête
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What are networks/graphs?

What is a graph? graphe
Mathematical object used to model relational data between entities.

The entities are called nodes or vertices
nœuds/sommets

A relation
between two entities is modeled by an edge
arête
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What are networks/graphs?

Graphs are a way to represent biological knowledge
Nodes can be...
genes, mRNAs, proteins, small RNAs, hormones, metabolites, species,
populations, individuals, ...

Additional information can be attached to these
nodes (GO term, protein family, functional motifs, cis-regulatory motifs, ...)

Relations can be...

• molecular regulation (transcriptional regulation, phosphorylation,
acetylation, ...)

• molecular interaction (protein-protein, protein-siRNA, ...)
• enzymatic reactions
• genetic interactions (when gene A is mutated, gene B expression is
up-regulated)

• co-localisation (genomic, sub-cellular, cellular, ...)
• co-occurence (when two entities are systematically found together)
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What are networks/graphs?

Example of a molecular network with molecular regulation

Nodes are genes
Relations are transcriptional regulations

[de Leon and Davidson, 2006]

NETBIO (27/04/2017) Networks JCEDMLM2FMGRNV2 6 / 38



What are networks/graphs?

Example of a molecular network with physical interactions

Nodes are proteins
Relations are physical interactions (Y2H)

made from data in
[Arabidopsis Interactome Mapping Consortium, 2011]

[Vernoux et al., 2011]
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What are networks/graphs?

Example of a metabolic network

Nodes are metabolites
Relations are enzymatic
reactions

Image taken from Project
“Trypanosome” (F. Bringaud -
iMET team, RMSB,
Bordeaux)
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What are networks/graphs?

Example of an ecologic network

Nodes are species
Relations are trophic links

[The QUINTESSENCE Consortium, 2016]
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What are networks/graphs?

Example of a molecular network with heterogeneous
information
Nodes
• shapes represent the nature of the entities
• colors indicate tissue localisation

Edges are direct molecular relations of different
types
• reliability: bold, dashed, normal lines
• inhibition or activation: T-line or arrow

[La Rota et al., 2011]
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What are networks/graphs?

What is a model?
Model: simplified representation of reality

Biological model

simplified representation of a biological process

Mathematical model

• simplified description of a system using
mathematical concepts

• in particular, statistical models represent the
data-generating process

biological interaction model = biological network + mathematical model
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What are networks useful for in biology? Visualization
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What are networks useful for in biology? Visualization

Advantages and drawbacks of network visualization
Visualization helps understand the network macro-structure and provides
an intuitive understanding of the network.

But all network visualizations are subjective and can mislead the person
looking at it if not careful. [Shen-Orr et al., 2002] Escherichia coli transcriptional
regulation network
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What are networks useful for in biology? Visualization

How to represent networks?

Many different algorithms that often produce solutions that are not unique
(integrate some randomness)

Most popular: force directed placement algorithms
• Fruchterman & Reingold [Fruchterman and Reingold, 1991]
• Kamada & Kawaï [Kamada and Kawai, 1989]

Such algorithms are computationally extensive and hard to use with large
networks (more than a few thousands nodes)

Another useful layout
• attribute circle layout (quick but can be hard to read)
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What are networks useful for in biology? Visualization

Network visualization software
(not only for biological networks)

• NetworkX (python library, not really interactive but produces
javascript) https://networkx.github.io

• igraph (python and R libraries, not really interactive)
http://igraph.org

• Tulip (interactive) http://tulip.labri.fr

• Cytoscape (interactive) http://cytoscape.org

• Gephi (interactive) gephi.org

• ...
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What are networks useful for in biology? Simple analyses based on network topology
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What are networks useful for in biology? Simple analyses based on network topology

What is network topology?
Network topology

• study of the network global and local structure
• produces numerical summaries ⇒ biological interpretation

Credits: S.M.H. Oloomi, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=35247515 (network)

and AJC1, CC BY-NC-SA 2.0, https://www.flickr.com/photos/ajc1/4830932578 (biology)

connected components are the
connected subgraphs, i.e., parts of
the graph in which any node can be
reached from any other node by a
path
composantes connexes

34 connected components
[Shen-Orr et al., 2002] Escherichia coli transcriptional regulation network
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What are networks useful for in biology? Simple analyses based on network topology

Global characteristics
(mainly used for comparisons between networks or with random graphs having common
characteristics with the real network)

Density densité

Number of edges divided by the number of pairs of nodes.

[Shen-Orr et al., 2002] Escherichia
coli transcriptional regulation

network: 423 nodes, 578 edges.
Density: ∼ 0.64%

[Leclerc, 2008]: biological networks
are generally sparsely connected (S.
cerevisiae, E. coli, D. melanogaster
transcriptional regulatory network
densities < 0.1): evolutionary
advantage for preserving robustness?

Transitivity transitivité

Number of triangles divided by the number of triplets connected by at least
two edges.

[Shen-Orr et al., 2002] Escherichia
coli transcriptional regulation
network. Transitivity: ∼ 2.38%

� density
Comparaison with random graphs
(same number of nodes and edges,
edges distributed at random between
pairs of nodes): average transitivity is
∼ 0.63%.
⇒ strong local density in Escherichia
coli transcriptional regulation network
(“modularity” structure).
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Global characteristics
(mainly used for comparisons between networks or with random graphs having common
characteristics with the real network)

Transitivity transitivité

Number of triangles divided by the number of triplets connected by at least
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Density is equal to 4
4×3/2 = 2/3 ; Transitivity is equal to 1/3.
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What are networks useful for in biology? Simple analyses based on network topology

Key measures for other numerical characteristics
Node degree degré

number of edges adjacent to a given node or number of neighbors of the
node

The degree of the red node is equal to 3.

[Jeong et al., 2000] shows that degree
distribution in metabolomic networks is
“scale-free”

frequency of nodes having a degree of k
∼ k−γ (highly skewed distributions)

Archaeoglobus fulgidus, E. coli,

Caenorhabditis elegans and average over 43

organisms
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What are networks useful for in biology? Simple analyses based on network topology

Key measures for other numerical characteristics
Shortest path length (between two nodes)

minimal number of edges needed to reach a node from the other node
through a path along the edges of the network

The shortest path length between red nodes is equal to 2.

observed average shortest path lengths is smaller
than in random graph with uniform distribution
of edges

[Jeong et al., 2000]
shows that shortest path
length distribution is
similar accross 43 species
in metabolomic networks
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What are networks useful for in biology? More advanced analyses based on network topology

Network motifs
[Shen-Orr et al., 2002] showed that some specific motifs

are found significantly more often in Escherichia coli transcription network
than in random networks with the same degree distribution.

[Milo et al., 2002,
Lee et al., 2002,
Eichenberger et al., 2004,
Odom et al., 2004,
Boyer et al., 2005,
Iranfar et al., 2006] show similar
conclusion in various species
(bacteria, yeast, higher organisms)
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What are networks useful for in biology? More advanced analyses based on network topology

Node clustering classification
Cluster nodes into groups that are densely connected and share few links
(comparatively) with the other groups. Clusters are often called
communities communautés (social sciences) or modules modules
(biology). [Fortunato, 2010]

Simplification of a large complex
network

[Holme et al., 2003] use clustering
of metabolic networks to provide a
simplified overview of the whole
network and meaningful clusters

Identify key groups or key genes

[Rives and Galitski, 2003] use
clustering in PPI network of yeast and
found that proteins mostly interacting
with members of their own cluster

are often essential proteins.
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What are networks useful for in biology? More advanced analyses based on network topology

Extracting important nodes

Hubs
Nodes with a high degree are called hubs: measure of the node popularity.

[Jeong et al., 2000] show that the
hubs are practically identical in
metabolic networks among many

species

[Lu et al., 2007] show that hubs
have low changes in expression and
have significantly different functions

than peripherical nodes
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What are networks useful for in biology? More advanced analyses based on network topology

Extracting important nodes

Betweenness (of a node) centralité

number of shortest paths between all pairs of nodes that pass through the
node. Betweenness is a centrality measure (nodes that are likely to
disconnect the network if removed).

The orange node’s degree is equal to 3, its betweenness to 4.
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What are networks useful for in biology? More advanced analyses based on network topology

Extracting important nodes

Betweenness (of a node) centralité

number of shortest paths between all pairs of nodes that pass through the
node. Betweenness is a centrality measure (nodes that are likely to
disconnect the network if removed).

[Yu et al., 2007] show that nodes
with high betweenness in PPI
networks are key connector proteins
and are more likely to be essential
proteins.
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What are networks useful for in biology? Biological interaction models
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What are networks useful for in biology? Biological interaction models

Principle of status prediction based on a biological network

Available data: a network in which nodes are labeled by (incomplete)
information (e.g., GO term, disease status...)
Question: complete the information of nodes with unknown status

Solution: Rule based on a majority vote among the neighbours. If the
score is greater than a given threshold, then status is selected.
[Zaag, 2016]

?
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What are networks useful for in biology? Biological interaction models

Prediction model using a graph

Available data: a set of gene expression profiles and a gene network (on
the same genes)
Question: predict the status of a sample (e.g., healthy / not healthy)

[Rapaport et al., 2007] using the network
knowledge improves the results by producing
solutions that have similar contributions for genes
connected by the network

regression model with network based penalization
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What are networks useful for in biology? Biological interaction models

Differential expression using a graph

Available data: a set of gene expression obtained in two conditions and a
gene network (on the same genes)
Question: find genes that are differentially expressed between the two
conditions

standard approach
independant tests and multiple test

corrections

But: multiple test corrections are
made for independant tests and genes

are strongly correlated

using the network (T. Ha’s Thesis
“A multivariate learning penalized method
for a joined inference of gene expression
levels and gene regulatory networks”)

a regression model for incorporating
the information on gene dependency
structure provided by the network

into the differential analysis
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into the differential analysis
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How to build networks?

Outline

1 What are networks/graphs?

2 What are networks useful for in biology?
Visualization
Simple analyses based on network topology
More advanced analyses based on network topology
Biological interaction models

3 How to build networks?
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How to build networks?

Standard methods for network inference

• bibliographic (expert based) inference (automatic language processing,
ontology, text mining, ...) [Huang and Lu, 2016]
Advantages: uses large expertise knowledge from biological databases

• statistical methods: from transcriptomic measures, infer network with
• nodes: genes;
• edges: dependency structure obtained from a statistical model

(different meanings)

Advantages: can handle interactions with yet unknown genes and
deal with data collected in specific conditions

Most widely used methods: relevance network, Gaussian
graphical models (GGM), Bayesian models
[Pearl, 1998, Pearl and Russel, 2002, Scutari, 2010] (R package
bnlearn)
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How to build networks?

Correlation networks and GGM

Data: gene expression data

individuals
n ' 30/50

X =

 . . . . . .

. . X j
i . . .

. . . . . .


︸ ︷︷ ︸

variables (selected gene expressions), p
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How to build networks?

Using correlations: relevance network
[Butte and Kohane, 1999,
Butte and Kohane, 2000]

First (naive) approach: calculate correlations between expressions for all
pairs of genes, threshold the smallest ones and build the network.

“Correlations” Thresholding Graph
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How to build networks?

But correlation is not causality...

strong indirect correlation
y z

x

set.seed(2807); x <- runif(100)

y <- 2*x+1+rnorm(100,0,0.1); cor(x,y); [1] 0.9988261

z <- 2*x+1+rnorm(100,0,0.1); cor(x,z); [1] 0.998751

cor(y,z); [1] 0.9971105

] Partial correlation

cor(lm(y∼x)$residuals,lm(z∼x)$residuals) [1] -0.1933699

Networks

are built using partial correlations, i.e., correlations between gene
expressions knowing the expression of all the other genes (residual
correlations).

NETBIO (27/04/2017) Networks JCEDMLM2FMGRNV2 33 / 38



How to build networks?

But correlation is not causality...

strong indirect correlation
y z

x

set.seed(2807); x <- runif(100)

y <- 2*x+1+rnorm(100,0,0.1); cor(x,y); [1] 0.9988261

z <- 2*x+1+rnorm(100,0,0.1); cor(x,z); [1] 0.998751

cor(y,z); [1] 0.9971105

] Partial correlation

cor(lm(y∼x)$residuals,lm(z∼x)$residuals) [1] -0.1933699

Networks

are built using partial correlations, i.e., correlations between gene
expressions knowing the expression of all the other genes (residual
correlations).

NETBIO (27/04/2017) Networks JCEDMLM2FMGRNV2 33 / 38



How to build networks?

But correlation is not causality...

strong indirect correlation
y z

x

Networks are built using partial correlations, i.e., correlations between
gene expressions knowing the expression of all the other genes
(residual correlations).

NETBIO (27/04/2017) Networks JCEDMLM2FMGRNV2 33 / 38



How to build networks?

GGM

Assumptions: (Xi )i=1,...,n are i.i.d. Gaussian random variables N (0,Σ)
(gene expression)

GGM definition

• Partial correlation formulation

j ←→ j ′(genes j and j ′ are linked)⇔ Cor
(
X j ,X j ′ |(X k)k 6=j ,j ′

)
6= 0

• Regression formulation

X j =
∑
j ′ 6=j

βjj ′X
j ′ + ε βjj ′ 6= 0⇔ j ←→ j ′(genes j and j ′ are linked)
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How to build networks?

Mathematical background

Theoretically: If X ∼ N (0,Σ) then for S = Σ−1

• partial correlation formulation

Cor
(
X j ,X j ′ |(X k)k 6=j ,j ′

)
= −

Sjj ′√
SjjSj ′j ′

• regression formulation

βjj ′ = −
Sjj ′

Sjj

In practice:
• Since p (number of genes) is often large compared to n (number of
samples), S is hard to estimate.

• After the estimation, entries of S are not null ⇒ How to select the
“largest” entries in S?
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How to build networks?

Some solutions

1 Seminal work
[Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b]
(implemented in the R package GeneNet)

• Estimation of S : regularization for inversion of Σ
• Edge selection: Bayesian approach

2 Sparse approach
[Friedman et al., 2008, Meinshausen and Bühlmann, 2006]
(implemented in the R package huge)

• estimation and selection performed together
• uses the regression framework in which a “sparse” penalty is added

(LASSO or Graphical LASSO)
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How to build networks?

Important notices

• ultra-high dimensionality: if p is the number of genes, n the number
of samples and k the (true) number of edges of a network, ultra-high
dimensionality means that k

[
1 + log

(
p(p−1)/2

k

)]
is “large” compared

to n

In this case, there is no hope to estimate the network
[Verzelen, 2012].

• applicability: Gaussian models are well designed for microarray
datasets. However, extension to RNA-seq data is non trivial and
still under development.
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Conclusion and References

Take home message...

networks are useful to model
complex systems

networks can be built
with various approaches
that define what they

can be used for

networks are useful information
that can be integrated in

biological models to improve
knowledge
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