
Nathalie Vialaneix
Année 2018/2019

M1 in Economics and Economics and Statistics
Applied multivariate Analysis - Big data analytics

Worksheet 4 - Parallel computing

This worksheet’s aim is to introduce parallel programming in R by presenting some standard packages allowing this
kind of computing. The first two exercises will present the package foreach , usable for standard parallel computing, and
the last exercise will present the package rmr2 for Map-Reduce parallel programming. This worksheet uses data set from
the R package mlbench:

library(mlbench)

Warning: This worksheet has been compiled on Linux (xUbuntu 18.04 LTS, satanic edition). As some of the command
lines are OS-dependant, the results for other OS are not given even though the command lines are provided. However, the
results should be very similar.

Exercice 1 Parallel bagging with CART

This first exercise illustrates the use of the R package foreach for simple parallel programming with a for loop. This
package is loaded with

library(foreach)

and requires the loading of a package supporting parallel computing which is doMC for Unix-like OS and doParallel for
Windows© OS. The number of cores in your computer can be detected with the function detectCores from the package
parallel. This package is automatically loaded when loading one of the two packages for parallel computing: doMC for
Unix-like OS:

library(doMC)

Loading required package: iterators
Loading required package: parallel

or doParallel for Windows© OS:

Not Run
library(doParallel)

1. Using the function detectCores, find out how many cores are available on your computer.

2. Unless a proper instruction is called to set R to use parallel computation, the foreach loop will not be run
in parallel. To see how many cores are going to be used by the foreach function, you can use the function
getDoParWorkers (package foreach). What is the initial number of cores used by the function foreach? This
value can be increased to a number larger than 1 with an instruction that is specific to your OS. For Unix-like OS
(using the doMC package), the number of cores is set with the function registerDoMC. On Windows© OS, the
number of cores is set with the function registerDoParallel (package doParallel). Use these functions to set
the number of cores to their default values: what is the default number of cores? Use these functions to set the
number of cores to a larger value (that must not exceed the total number of available cores minus one).

3. The data used in this exercise will be the data used in the first exercise of the previous worksheet:

data(Sonar)

Split the data into a training and a test sets with respective sizes 100 and 108.

4. Use a for loop to train B = 1000 classification trees from bootstrap samples obtained from the training data set.
For each tree, find the predicted classes for the training and test sets (store these values in two matrices with 1000
columns and a number of rows equal to, respectively, 100 and 108). What is the computational time for this loop?
Using these results and a majority vote scheme, find the bagging estimates for the class and compute the training
and test misclassification rates. Use the package rpart for this question:

library(rpart)

Remark: Here a simple misclassification rate for the training data set is required although a OOB misclassification
rate would have been more suited.

5. Answer the same questions with a foreach loop (use .combine=cbind to obtain column-wise results containing
the prediction for the training data set in the first rows and prediction for the test data set in the last rows. Comment
the difference in computation times between the two approaches. The ellapsed time is approximately 2 times smaller
with the foreach loop than with the for loop whereas the user time is comparable (but has been divided on several
cores). The performances are similar to the ones obtained with the for function.

Exercice 2 Parallel random forest

This exercise uses the data Ionosphere, already presented in the first exercise of worksheet number 2:

data(Ionosphere)

This exercise’s aim is to present how to use random forest in parallel and to compare its execution with a sequencial
approach. Hence, it requires the loading of the package randomForest:

library(randomForest)

randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.

1. Briefly describe the data and their purpose and split them into a training and a test sets with respective sizes 201
and 150.

2. Train a random forest on the training data set, with 1000 trees in the forest and using the arguments xtest and
ytest to obtain the test error. Also, ask the computation of the importance of the variables and keep the forest
(option keep.forest). What is the computational time required to train such a forest?

3. Use a foreach loop with the option .combine=combine to train 10 times a random forest with 100 trees on several
cores. This will result in a random forest with 1000 trees as in the previous question (use the same options for the
test error, the importance and for keeping the forest). Compare the computational times required with this approach.

4. Use the combined forest obtained in the previous question to compute the OOB and test misclassification rates and
the importances of the predictors. Make a graphic for the importances. Comment on those results.

V
5

V
7

V
3

V
6

V
27

V
31 V

1
V

4
V

9
V

18
V

14
V

21 V
8

V
29

V
24

V
28

V
12

V
15

V
26

V
16

V
10

V
23

V
25

V
19

V
11

V
20

V
22

V
13

V
33

V
30

V
17

V
34

V
32 V

2

Variable importances in the forest
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06

Exercice 3 First Map/Reduce job

In this exercise, we will be using a larger data set that describes social environment of several thousands Americans.
The purpose is to predict whether or not these people have an income that exceeds $50K/yr. We will be using these data to
test our first Map/Reduce (MR) job that will simply consist in calculating the average age for people who have an incone
smaller/lager than $50K/yr. The data set is downloaded from the UCI ML repository1 with the following command lines:

dir.create("dataset")

Warning in dir.create("dataset"): ’dataset’ already exists

download.file("http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data",
"dataset/adult_train.csv")

download.file("http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test",
"dataset/adult_test.csv")

These lines first create a directory called dataset and download two files (respectively the training and test data sets)
in two CSV files called adult_train.csv and adult_test.csv.

1https://archive.ics.uci.edu/ml

https://archive.ics.uci.edu/ml

Disclaimer: Usually, if the task is performed in a true Hadoop environment with multiple computers, the data are not
loaded in R but accessed through HDFS via the package rhdfs. This prevents to work only with data sets that can be
loaded in RAM. Here, we will be using the package rmr2 “as if” Hadoop was installed but with a local backend, which
means that the data set will be manipulated with R directly rather than with HDFS. This setting is set using the following
command lines (that load the package rmr2 and set a local backend).

library(rmr2)

Warning: S3 methods ’gorder.default’, ’gorder.factor’, ’gorder.data.frame’,
’gorder.matrix’, ’gorder.raw’ were declared in NAMESPACE but not found
Please review your hadoop settings. See help(hadoop.settings)

rmr.options(backend="local")

NULL

Finally, to help you write your first MR job, you can have a look at this tutorial https://github.com/
RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md.

1. Using the function mapreducewith the data set path as an input and the input format properly set using the function
make.input.format, load the two files into the (virtual) HDFS. Try to print the result of this command: what do
you obtain?
Hint: Inspect the file with a simple text editor before performing this step to set up properly the options quote, sep
and skip (see help(read.table) to check the meaning of these options).

2. Using the function from.dfs allows R to read the result of the mapreduce function. However, in general, this is
not recommended (because the data may be much too large to be loaded in RAM). The result is expressed as a list
with two components: $key and $val. Use this function to print the keys and combine it with head and dim to
obtain the dimension of the data sets and to print the first lines.

3. Describe the map job that would produce a list of pairs (key, value) to obtain the average age for the two income
statuses. Implement it within the function mapreduce in properly setting the option map by using the function
keyval and use it on the training data set. Then, use the functions from.dfs and head on the output of the
function mapreduce to print the first keys and first values obtained from the MR job.

4. Describe the reduce job that would produce the average age for the two income statuses. Modify your previous
function to include this reduce job and run it on the training data set. This is done using the arguement reduce and
identifying what the output keys and values should be. Finally, use the function mapreduce to print the final result.

5. Use an MR job on the training and test data sets to compute the number of males and females per country. Use
a combination of the country and the gender as the indexing key (with the function paste and separator _ for
instance).

6. Use the functions strplit and unlist on the keys to obtain, for each value, its country and its gender. Make a
data frame with the first two columns being the country and the gender respectively and the last column being the
corresponding frequency. Using the function xtabs, build a contingency table between country and gender from
this matrix and perform a χ2 test for the training and test sets.

https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

	Parallel bagging with CART
	Parallel random forest
	First Map/Reduce job

