
Nathalie Vialaneix
Année 2019/2020

M2 in Statistics & Econometrics
Graph mining

Lesson 3 - Tests and random graphs

This worksheet illustrates the use of the R package igraph to generate random networks and to perform tests of
significance on graphs. The packages RColorBrewer, ggplot2 and doMC (doParallel for Windows users) will also be
used in this worksheet. Start loading all the packages with:

library(igraph)
library(RColorBrewer)
library(ggplot2)
library(doMC)

The data used to illustrate this work can be found at http://www.nathalievialaneix.eu/doc/zip/data_M2SE.
zip (for GOF and FB networks; once uncompressed you obtain three data files, as described in the lesson and two
README files that describe the data) and at http://www.nathalievialaneix.eu/doc/txt/fbnet-el-2015.txt
and http://www.nathalievialaneix.eu/doc/txt/fbnet-name-2015.txt for (respectively) the edge list and the
initials of the vertices (NVV network). Load all these files and put them in a subdirectory called data. Create your R
script lesson2.R in another subdirectory (located in the same place than data) called RLib.

Exercice 1 Comparison with random graphs

This exercise uses the GOT network. Start the exercise by creating got_net as was done in worksheet 1.

IGRAPH 6606f3d UNW- 107 352 --
+ attr: layout (g/n), name (v/c), weight (e/n)
+ edges from 6606f3d (vertex names):
[1] Aemon --Grenn Aemon --Samwell Aerys --Jaime
[4] Aerys --Robert Aerys --Tyrion Aerys --Tywin
[7] Alliser--Mance Amory --Oberyn Arya --Anguy
[10] Arya --Beric Arya --Bran Arya --Brynden
[13] Arya --Cersei Arya --Gendry Arya --Gregor
[16] Jaime --Arya Arya --Joffrey Arya --Jon
[19] Arya --Rickon Robert --Arya Arya --Roose
[22] Arya --Sandor Arya --Thoros Tyrion --Arya
+ ... omitted several edges

1. The function sample_gnm is used to generate random graphs from the model G(n,m). What does the following
code perform?

set.seed(20041721)
B <- 100
global_char <- matrix(NA, nrow = B, ncol = 3)
for (ind in 1:B) {
rg <- sample_gnm(vcount(got_net), ecount(got_net))
if (is.connected(rg)) {
global_char[ind,] <- c(graph.density(rg), transitivity(rg, weights = NA),

diameter(rg, weights = NA))

http://www.nathalievialaneix.eu/doc/zip/data_M2SE.zip
http://www.nathalievialaneix.eu/doc/zip/data_M2SE.zip
http://www.nathalievialaneix.eu/doc/txt/fbnet-el-2015.txt
http://www.nathalievialaneix.eu/doc/txt/fbnet-name-2015.txt

}
}
colnames(global_char) <- c("density", "transitivity", "diameter")
global_char <- na.omit(global_char)

What does the ‘for‘ loop returns for a row that comes from a non connected graph? How is this problem handled?
Using this script, answer to the following questions:

(a) How many generated graphs were connected?

[1] 82

(b) How do the transitivity and the diameter of these graphs compare to the transitivity of the real graph got_net?

0

5

10

0.1 0.2 0.3

transitivity

co
un

t

transitivity of ER graphs similar to GOT

0

20

40

60

0 2 4 6

diameter

co
un

t

diameter of ER graphs similar to GOT

2. Use the same approach and answer the same question with the function sample_pa that generates scale free graphs
according to Barabasi-Albert model. Use m = 4 to run this function (how to tune this number is out of the scope of
this lesson).

0

5

10

15

0.15 0.20 0.25 0.30

transitivity

co
un

t
transitivity of SF graphs similar to GOT

0

25

50

75

100

0 2 4 6

diameter

co
un

t
diameter of SF graphs similar to GOT

Exercice 2 Permutation tests

1. The function rewire is used to generate random graphs by randomly permuting two edge endpoints. The second
argument with of this function specifies a function call to one of the rewiring method, keeping_degseq indicating
to keep the degree distribution. What does the following code perform and which value to use for Q?
Be careful, when using this script, that it uses a parallel backend. For Windows, the proper parallel backend is
handled with the functions of the R package doParallel.

set.seed(22011600)
iter <- 100
B <- 100
all_seeds <- sample(1:22011600, B, replace = FALSE)
registerDoMC(cores = 7)
global_char <- foreach (ind=1:B, .combine = rbind) %dopar% {
set.seed(all_seeds[ind])
rg <- rewire(got_net, keeping_degseq(n = iter * Q))
if (is.connected(rg) & is.simple(rg)) {
res <- c("transitivity" = transitivity(rg, weights = NA),

"diameter" = diameter(rg, weights = NA))

} else res <- rep(NA, 2)
return(res)

}
global_char <- na.omit(global_char)

How many of these networks were connected?

[1] 84

2. Use the previous result to compare the transitivity of the observed graph
with the transitivity of random graphs with the same degree distribution.

0

2

4

6

8

0.15 0.20 0.25 0.30

transitivity

co
un

t

transitivity of graphs with the same degree distribution than GOT

3. Use the same type of script to generate a list of iter betweenness distributions for random graphs with the same
degree distribution than GOT. How many of these networks were connected?

set.seed(22011706)
iter <- 100
B <- 100
all_seeds <- sample(1:22011706, B, replace = FALSE)
registerDoMC(cores = 7)

global_char <- foreach (ind=1:B, .combine = rbind) %dopar% {
set.seed(all_seeds[ind])
rg <- rewire(got_net, keeping_degseq(n = iter * Q))
if (is.connected(rg) & is.simple(rg)) {
res <- betweenness(rg, weights = NA)

} else res <- rep(NA, vcount(got_net))
return(res)

}
global_char <- na.omit(global_char)
nrow(global_char)

[1] 88

4. What does the following code compute?

obtain estimated p-values
bet_got <- betweenness(got_net, weights = NA)
valid_exp <- nrow(global_char)
c_betweenness <- rbind(bet_got, global_char)
p_high <- apply(c_betweenness, 2, function(acol)
sum(acol[1] > acol[-1]) / valid_exp)

p_low <- apply(c_betweenness, 2, function(acol)
sum(acol[1] < acol[-1]) / valid_exp)

5. Use the obtained p_high and p_low to obtain the following plot: blue nodes are those that have a betweenness lower
than expected by random chance at risk 5%, red nodes are those with a betweenness larger than expected. Size of the
nodes are proportionnal to the log-transformed betweenness and only blue and red nodes have their names displayed.

Grenn

Aerys
Robert

Cersei
Gregor

Joffrey

Jon

Barristan

Brienne

Petyr

Stannis

Ilyn

Meryn
Varys

Daario
Drogo

Daenerys

DavosGilly

Margaery

Qhorin
Rattleshirt

	Comparison with random graphs
	Permutation tests

